高等代数(七)-线性变换02:线性变换的运算

§ 2 § 2 §2 线性变换的运算
在这一节,我们来介绍线性变换的运算及其简单性质.
首先,线性空间的线性变换作为映射的特殊情形当然可以定义乘法. 设
A , B \mathscr{A}, \mathscr{B} A,B 是线性空间 V V V 的两个线性变换,定义它们的乘积
A B \mathscr{A} \mathscr{B} AB
( A B ) ( α ) = A ( B ( α ) , α ∈ V . (\mathscr{A B})(\boldsymbol{\alpha})=\mathscr{A}(\mathscr{B}(\boldsymbol{\alpha}), \quad \alpha \in V . (AB)(α)=A(B(α),αV.
容易证明,线性变换的乘积也是线性变换. 事实上,
( A B ) ( α + β ) = A ( B ( α + β ) ) = A ( B ( α ) + B ( β ) ) = A ( B ( α ) ) + A ( B ( β ) ) = ( A B ) ( α ) + ( A B ) ( β ) , ( A B ) ( k α ) = A ( B ( k α ) ) = A ( k B ( α ) ) = k A ( B ( α ) ) = k ( A B ) ( α ) . \begin{array}{l} (\mathscr{A} \mathscr{B})(\boldsymbol{\alpha}+\boldsymbol{\beta})=\mathscr{A}(\mathscr{B}(\boldsymbol{\alpha}+\boldsymbol{\beta}))=\mathscr{A}(\mathscr{B}(\boldsymbol{\alpha})+\mathscr{B}(\boldsymbol{\beta})) \\ =\mathscr{A}(\mathscr{B}(\boldsymbol{\alpha}))+\mathscr{A}(\mathscr{B}(\boldsymbol{\beta}))=(\mathscr{A} \mathscr{B})(\boldsymbol{\alpha})+(\mathscr{A} \mathscr{B})(\boldsymbol{\beta}), \\ (\mathscr{A} \mathscr{B})(k \boldsymbol{\alpha})=\mathscr{A}(\mathscr{B}(k \boldsymbol{\alpha}))=\mathscr{A}(k \mathscr{B}(\boldsymbol{\alpha}))=k \mathscr{A}(\mathscr{B}(\boldsymbol{\alpha}))=k(\mathscr{A B})(\boldsymbol{\alpha}) . \end{array} (AB)(α+β)=A(B(α+β))=A(B(α)+B(β))=A(B(α))+A(B(β))=(AB)(α)+(AB)(β),(AB)(kα)=A(B(kα))=A(kB(α))=kA(B(α))=k(AB)(α).

这说明 A B \mathscr{A} \mathscr{B} AB 是线性变换.
既然一般映射的乘法适合结合律,线性变换的乘法当然也适合结合律,即
( A B ) C = A ( B C ) .  (\mathscr{A B}) \mathscr{C}=\mathscr{A}(\mathscr{B} \mathscr{C}) \text {. } (AB)C=A(BC)
但线性变换的乘法一般是不可交换的. 例如, 在实数域 R \mathbf{R} R
上的线性空间 R [ x ] R[x] R[x] 中, 线性变换
D ( f ( x ) ) = f ′ ( x ) , J ( f ( x ) ) = ∫ 0 x f ( t ) d t \mathscr{D}(f(x))=f^{\prime}(x), \quad \mathscr{J}(f(x))=\int_{0}^{x} f(t) \mathrm{d} t D(f(x))=f(x),J(f(x))=0xf(t)dt
的乘积 D F = E \mathscr{D} \mathscr{\mathscr { F }}=\mathbb{E} DF=E, 但一般
I D ≠ E \mathscr{I} \mathscr{D} \neq \mathscr{E} ID=E.
对于乘法,单位变换 E \mathscr{E} E 有特殊的地位. 对于任意线性变换
A \mathscr{A} A, 都有
E A = A E = A .  \mathscr{E A}=\mathscr{A} \mathscr{E}=\mathscr{A} \text {. } EA=AE=A
其次,对于线性变换还可以定义加法.设 A , B \mathscr{A}, \mathscr{B} A,B 是线性空间
V V V 的两个线性变换, 定义它们的和 A + B \mathscr{A}+\mathscr{B} A+B
( A + B ) ( α ) = A ( α ) + B ( α ) , α ∈ V . (\mathscr{A}+\mathscr{B})(\boldsymbol{\alpha})=\mathscr{A}(\boldsymbol{\alpha})+\mathscr{B}(\boldsymbol{\alpha}), \quad \boldsymbol{\alpha} \in V . (A+B)(α)=A(α)+B(α),αV.
容易证明,线性变换的和还是线性变换.事实上,
( A + B ) ( α + β ) = A ( α + β ) + B ( α + β ) = ( A ( α ) + A ( β ) ) + ( B ( α ) + B ( β ) ) = ( A (

  • 18
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值