§ 1.2 § 1.2 §1.2概率的定义及其确定方法
在这一节中,我们要给出概率的定义及其确定方法,
这是概率论中最基本的一个问题.简单而直观的说法就是:
概率是随机事件发生的可能性大小.对此我们先看下面一些经验事实:
(1)随机事件的发生是带有偶然性的,但随机事件发生的可能性是有大小之分的,
例如口袋中有 10 个相同大小的球,其中 9 个黑球, 1 个红球, 从口袋中任取 1
球,人们的共识是:取出黑球的可能性比取出红球的可能性大.
(2)随机事件发生的可能性是可以设法度量的,
就好比一根木棒有长度,一块土地有面积一样. 例如抛一枚硬币,
出现正面与出现反面的可能性是相同的,各为 1 / 2 1 / 2 1/2.
足球裁判就用抛硬币的方法让双方队长选择场地,以示机会均等.
(3) 在日常生活中,人们对一些随机事件发生的可能性大小往往是用百分比 (0
到 1 之间的一个数)进行度量的. 例如购买彩票后可能中奖,
可能不中奖,但中奖的可能性大小可以用中奖率来度量;
抽取一件产品可能为合格品,也可能为不合格品,
但产品质量的好坏可以用不合格品率来度量;新生繁儿可能为男孩,
也可能为女孩,但生男孩的可能性可以用男縏出生率来度量.这些中奖率、不合格品率、男繁出生率等都是概率的原型.
在概率论发展的历史上,曾有过概率的古典定义、概率的几何定义、概率的频率定义和概率的主观定义.这些定义各适合一类随机现象.那么如何给出适合一切随机现象的概率的最一般的定义呢?
1900年数学家希尔伯特 (Hilbert,
1862-1943)提出要建立概率的公理化定义以解决这个问题,即以最少的几条本质特性出发去刻画概率的概念.
1933年苏联数学家柯尔莫戈洛夫 (Kolmogorov,
1903-1987)首次提出了概率的公理化定义,这个定义既概括了历史上几种概率定义中的共同特性,又避免了各自的局限性和含混之处,
不管什么随机现象,只有满足该定义中的三条公理,才能说它是概率.这一公理化体系迅速获得举世公认,是概率论发展史上的一个里程碑.
有了这个公理化定义后,概率论得到了迅速发展.
1.2.1 概率的公理化定义
定义 1.2.1 设 Ω \Omega Ω 为一个样本空间, F \mathscr{F} F 为
Ω \Omega Ω的某些子集组成的一个事件域. 如果对任一事件 A ∈ F A \in \mathscr{F} A∈F,
定义在 F \mathscr{F} F 上的一个实值函数 P ( A ) P(A) P(A) 满足:
(1) 非负性公理 若 A ∈ F A \in \mathscr{F} A∈F, 则 P ( A ) ⩾ 0 P(A) \geqslant 0 P(A)⩾0;
(2) 正则性公理 P ( Ω ) = 1 P(\Omega)=1 P(Ω)=1;
(3) 可列可加性公理 若 A 1 , A 2 , ⋯ , A n , ⋯ A_{1}, A_{2}, \cdots, A_{n}, \cdots A1,A2,⋯,An,⋯互不相容,则
P ( ⋃ i = 1 ∞ A i ) = ∑ i = 1 ∞ P ( A i ) , P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right), P(i=1⋃∞Ai)=i=1∑∞P(Ai),
则称 P ( A ) P(A) P(A) 为事件 A A A 的概率,称三元素
( Ω , F , P ) (\Omega, \mathscr{F}, P) (Ω,F,P)为概率空间.
概率的公理化定义刻画了概率的本质, 概率是集合 (事件)的函数, 若在事件域
F \mathscr{F} F上给出一个函数,当这个函数能满足上述三条公理,
就被称为概率;当这个函数不能满足上述三条公理中任一条,就被认为不是概率.
公理化定义没有告诉人们如何去确定概率.历史上在公理化定义出现之前,概率的频率定义、古典定义、几何定义和主观定义都在一定的场合下,有着各自确定概率的方法,
所以在有了概率的公理化定义之后,把它们看作确定概率的方法是恰当的.下面先介绍在确定概率的古典方法中大量使用的排列与组合公式,然后分别讲述确定概率的方法.
1.2.2排列与组合公式
排列与组合都是计算 “从 n n n 个元素中任取 r r r个元素”
的取法总数公式,其主要区别在于: 如果不讲究取出元素间的次序,则用组合公式,
否则用排列公式. 而所谓讲究元素间的次序,可以从实际问题中得以辨别,
例如两个人相互握手是不讲次序的;而两个人排队是讲次序的,因为"甲右乙左"与"乙右甲左"是两件事.
排列与组合公式的推导都基于如下两条计数原理:
1.乘法原理
如果某件事需经 k k k 个步骤才能完成, 做第一步有 m 1 m_{1} m1种方法, 做第二步有
m 2 m_{2} m2 种方法, ⋯ ⋯ \cdots \cdots ⋯⋯, 做第 k k k 步有 m k m_{k} mk
种方法,那么完成这件事共有 m 1 × m 2 × ⋯ × m k m_{1} \times m_{2} \times \cdots \times m_{k} m1×m2×⋯×mk
种方法.
臂如,由甲城到乙城有 3 条旅游线路, 由乙城到丙城有 2
条旅游线路,那么从甲城经乙城去丙城共有 3 × 2 = 6 3 \times 2=6 3×2=6 条旅游线路.
2.加法原理
如果某件事可由 k k k 类不同途径之一去完成, 在第一类途径中有 m 1 m_{1} m1
种完成方法, 在第二类途径中有 m 2 m_{2} m2 种完成方法, ⋯ ⋯ \cdots \cdots ⋯⋯, 在第
k k k 类途径中有 m k m_{k} mk 种完成方法,那么完成这件事共有
m 1 + m 2 + ⋯ + m k m_{1}+m_{2}+\cdots+m_{k} m1+m2+⋯+mk 种方法.
譬如,由甲城到乙城去旅游有三类交通工具: 汽车、火车和飞机. 而汽车有 8
个班次,火车有 5 个班次, 飞机有 3 个班次, 那么从甲城到乙城共有
8 + 5 + 3 = 16 8+5+3=16 8+5+3=16个班次供旅游者选择.
排列与组合的定义及其计算公式如下.
1.排列
从 n n n 个不同元素中任取 r ( r ⩽ n ) r(r \leqslant n) r(r⩽n)
个元素排成一列(考虑元素先后出现次序), 称此为一个排列,
此种排列的总数记为 P n ′ \mathrm{P}_{n}^{\prime} Pn′. 按乘法原理,
取出的第一个元素有 n n n种取法, 取出的第二个元素有 n − 1 n-1 n−1 种取法,
⋯ ⋯ \cdots \cdots ⋯⋯, 取出的第 r r r 个元素有 n − r + 1 n-r+1 n−r+1 种取法,所以有
P n ′ = n × ( n − 1 ) × ⋯ × ( n − r + 1 ) = n ! ( n − r ) ! . \mathrm{P}_{n}^{\prime}=n \times(n-1) \times \cdots \times(n-r+1)=\frac{n !}{(n-r) !} . Pn′=n×(n−1)×⋯×(n−r+1)=(n−r)!n!.
若 r = n r=n r=n,则称为全排列,记为 P n \mathrm{P}_{n} Pn. 显然,
全排列 P n = n ! \mathrm{P}_{n}=n ! Pn=n!.
2. 重复排列
从 n n n个不同元素中每次取出一个,放回后再取下一个, 如此连续取
r r r次所得的排列称为重复排列,此种重复排列数共有 n ′ n^{\prime} n′ 个.
注意:这里的 r r r 允许大于 n n n.
3. 组合
从 n n n 个不同元素中任取 r ( r ⩽ n ) r(r \leqslant n) r(r⩽n)
个元素并成一组(不考虑元素间的先后次序),称此为一个组合,
此种组合的总数记为 ( n r ) \left(\begin{array}{l}n \\ r\end{array}\right) (nr)
或 C n ′ \mathrm{C}_{n}^{\prime} Cn′.按乘法原理此种组合的总数为
( n r ) = P n ′ r ! = n ( n − 1 ) ⋯ ( n − r + 1 ) r ! = n ! r ! ( n − r ) ! . \left(\begin{array}{l} n \\ r \end{array}\right)=\frac{\mathrm{P}_{n}^{\prime}}{r !}=\frac{n(n-1) \cdots(n-r+1)}{r !}=\frac{n !}{r !(n-r) !} . (nr)=r!Pn′=r!n(n−1)⋯(n−r+1)=r!(n−r)!n!.
在此规定 0 ! = 1 0 !=1 0!=1 与
( n 0 ) = 1 \left(\begin{array}{l}n \\ 0\end{array}\right)=1 (n0)=1.组合具有性质:
( n r ) = ( n n − r ) \left(\begin{array}{c} n \\ r \end{array}\right)=\left(\begin{array}{c} n \\ n-r \end{array}\right) (nr)=(nn−r)
4.重复组合
从 n n n 个不同元素中每次取出一个, 放回后再取下一个,如此连续取 r r r
次所得的组合称为重复组合,
此种重复组合总数为 ( n + r − 1 r ) \left(\begin{array}{c}n+r-1 \\ r\end{array}\right) (n+r−1r).
注意: 这里的 r r r 也允许大于 n n n.
重复组合数的得出可如下考虑:将此 n n n个元素画成 n n n 个盒子 (用 n + 1 n+1 n+1
根火柴棒示意, 见图 1.2.1), 如果第 i i i 个元素取到过一次,则在此盒子中用"
O O O"作一
oo ∣ 0 ∣ |0| ∣0∣… bod
图 1.2.1重复组合示意图记号.图 1.2.1 所示意味着:第一个元素取到过 2 次, 第
2个元素取到过 0 次,第 3 个元素取到过 1 次, ⋯ ⋯ \cdots \cdots ⋯⋯, 第
n n n个元素取到过 3 次.因为共取 r r r 次,所以共有 r r r 个 " O O O
“, n + 1 n+1 n+1个”“.如此所有的 r r r 个” O O O “和 n + 1 n+1 n+1个”"
中除了两端的那两个"“不可以动外, 共有 n + r − 1 n+r-1 n+r−1 个” ◯ \bigcirc ◯ " 和 “”
可随意放置,不同的放置表示不同的取法. 因此重复组合数就等于在此
n + r − 1 n+r-1 n+r−1个位置上任选 r r r 个放 " O O O ", 或此 n + r − 1 n+r-1 n+r−1 个位置上任选
n − 1 n-1 n−1个放 " ∣ \mid ∣ ",
而 ( n + r − 1 r ) \left(\begin{array}{c}n+r-1 \\ r\end{array}\right) (n+r−1r)
和 ( n + r − 1 n − 1 ) \left(\begin{array}{c}n+r-1 \\ n-1\end{array}\right) (n+r−1n−1)是相等的.
上述四种排列组合及其计算公式,在确定概率的古典方法中经常使用,但在使用中要注意识别是否讲次序、是否重复.
1.2.3确定概率的频率方法
确定概率的频率方法是在大量重复试验中,用频率的稳定值去获得概率的一种方法,其基本思想是:
(1) 与考察事件 A A A 有关的随机现象可大量重复进行.
(2) 在 n n n 次重复试验中, 记 n ( A ) n(A) n(A) 为事件 A A A 出现的次数, 又称 n ( A ) n(A) n(A)
为事件 A A A 的频
数.称
f n ( A ) = n ( A ) n f_{n}(A)=\frac{n(A)}{n} fn(A)=nn(A)
为事件 A A A 出现的频率.
(3)人们的长期实践表明: 随着试验重复次数 n n n 的增加,频率
f n ( A ) f_{n}(A) fn(A)会稳定在某一常数 a a a 附近,
我们称这个常数为频率的稳定值.这个频率的稳定值就是我们所求的概率.
注意,确定概率的频率方法虽然是很合理的,但此方法的缺点也是很明显的:在现实世界里,
人们无法把一个试验无限次地重复下去,因此要精确获得频率的稳定值是困难的.频率方法提供了概率的一个可供想象的具体值,并且在试验重复次数
n n n 较大时, 可用频率给出概率的一个近似值,这一点是频率方法最有价值的地方.
在统计学中就是如此做的,且称频率为概率的估计值. 譬如,
在足球比赛中,人们很关心罚点球命中的可能性大小. 有人曾对 1930 年至 1988
年世界各地的53274 场重大足球比赛作了统计: 在判罚的 15382 个点球中有
11172 个命中.由此可得罚点球命中率的估计值为 11172 / 15382 = 0.726 11172 / 15382=0.726 11172/15382=0.726.
容易验证:用频率方法确定的概率满足公理化定义,它的非负性与正则性是显然的,而可加性只需注意到:
当 A A A 与 B B B 互不相容时, 计算 A ∪ B A \cup B A∪B的频数可以分别计算的
A A A的频数和 B B B 的频数, 然后再相加,
这意味着 n ( A ∪ B ) = n ( A ) + n ( B ) n(A \cup B)=n(A)+n(B) n(A∪B)=n(A)+n(B),从而有
f n ( A ∪ B ) = n ( A ∪ B ) n = n ( A ) + n ( B ) n = n ( A ) n + n ( B ) n = f n ( A ) + f n ( B ) . \begin{aligned} f_{n}(A \cup B) & =\frac{n(A \cup B)}{n}=\frac{n(A)+n(B)}{n} \\ & =\frac{n(A)}{n}+\frac{n(B)}{n}=f_{n}(A)+f_{n}(B) . \end{aligned} fn(A∪B)=nn(A∪B)=nn(A)+n(B)=nn(A)+nn(B)=fn(A)+fn(B).
例1.2.1 说明频率稳定性的例子.
(1)抛硬币试验(见[3])
历史上有不少人做过抛硬币试验,其结果见表 1.2. 从表中的数据可以看出:
出现正面的频率逐渐稳定在 0.5 .用频率的方法可以说: 出现正面的概率为 0.5 .
表 1.2.1历史上抛硬币试验的若干结果
试验者 抛硬币次数 出现正面次数 频率
德摩根(De Morgan) 2048 1061 0.5181
蒲丰(Buffon) 4040 2048 0.5069
费勒(Feller) 10000 4979 0.4979
皮尔逊(Pearson) 12000 6019 0.5016
皮尔逊 24000 12012 0.5005
(2) 英文字母的频率 (见[3])
人们在生活实践中已经认识到:英文中某些字母出现的频率要高于另外一些字
母. 但
26个英文字母各自出现的频率到底是多少?有人对各类典型的英文书刊中字母出现的频率进行统计,发现各个字母的使用频率相当稳定
(见表 1.2.2).
这项研究对计算机键盘的设计(在方便的地方安排使用频率最高的字母键)、信息的编码(用较短的码编排使用频率最高的字母)
等方面都是十分有用的.
表 1.2.2英文字母的使用频率
字母 使用频率 字母 使用频率 字母 使用频率
E \mathrm{E} E 0.1268 L \mathrm{~L} L 0.0394 P \mathrm{P} P 0.0186
T \mathrm{~T} T 0.0978 D \mathrm{D} D 0.0389 B \mathrm{~B} B 0.0156
A \mathrm{~A} A 0.0788 U \mathrm{U} U 0.0280 V \mathrm{~V} V 0.0102
O \mathrm{O} O 0.0776 C \mathrm{C} C 0.0268 K \mathrm{~K} K 0.0060
I \mathrm{I} I 0.0707 F \mathrm{~F} F 0.0256 X \mathrm{X} X 0.0016
N \mathrm{~N} N 0.0706 M \mathrm{M} M 0.0244 J \mathrm{~J} J 0.0010
S \mathrm{~S} S 0.0634 W \mathrm{~W} W 0.0214 Q \mathrm{Q} Q 0.0009
R \mathrm{R} R 0.0594 Y \mathrm{Y} Y 0.0202 Z \mathrm{Z} Z 0.0006
H \mathrm{H} H 0.0573 G \mathrm{G} G 0.0187
(3) 女管出生频率 (见[7])
研究女繁出生频率,对人口统计是很重要的.
历史上较早研究这个问题的有拉普拉斯(Laplace,1749-1827),他对伦敦、彼得堡、柏林和全法国的大量人口资料进行研究,发现女婴出生频率总是在
21 / 43 21 / 43 21/43 左右波动.
统计学家克拉默(C ramer, 1893-1985) 用瑞典 1935 年的官方统计资料 (见表 1.2
.3 ) ) ),发现女婴出生频率总是在 0.482 左右波动.
表 1.2 .3 瑞典 1935年各月出生女婴的频率
月份 1 2 3 4 5 6
姦儿数 7280 6957 7883 7884 7892 7609
女知数 3537 3407 3866 3711 3775 3665
频率 0.486 0.490 0.490 0.471 0.478 0.482
月份 7 8 9 10 11 12 全年
繁儿数 7585 7393 7203 6903 6552 7132 88 273 88 \quad 273 88273
女翂数 3621 3596 3491 3391 3160 3371 42591
频率 0.477 0.486 0.485 0.491 0.482 0.473 0.4825
1.2.4确定概率的古典方法
确定概率的古典方法是概率论历史上最先开始研究的情形.它简单、直观,
不需要做大量重复试验,
而是在经验事实的基础上,对被考察事件的可能性进行逻辑分析后得出该事件的概率.
古典方法的基本思想如下:
(1)所涉及的随机现象只有有限个样本点, 譬如为 n n n 个.
(2)每个样本点发生的可能性相等 (称为等可能性). 例如,
抛一枚均匀硬币,“出现正面” 与 “出现反面” 的可能性相等; 抛一枚均匀骰子,
出现各点 ( 1 ∼ 6 ) (1 \sim 6) (1∼6) 的可能性相
等;从一副扑克牌中任取一张,每张牌被取到的可能性相等.
(3) 若事件 A A A含有 k k k 个样本点, 则事件 A A A的概率为
P ( A ) = 事件 A 所含样本点的个数 Ω 中所有样本点的个数 = k n . P(A)=\frac{\text { 事件 } A \text { 所含样本点的个数 }}{\Omega \text { 中所有样本点的个数 }}=\frac{k}{n} . P(A)=Ω 中所有样本点的个数 事件 A 所含样本点的个数 =nk.
容易验证,由上式确定的概率满足公理化定义,它的非负性与正则性是显然的.而满足可加性的理由与频率方法类似:
当 A A A 与 B B B 互不相容时, 计算 A ∪ B A \cup B A∪B 的样本点个数可以分别计算 A A A
的样本点个数和 B B B的样本点个数, 然后再相加, 从而有可加性
P ( A ∪ B ) P(A \cup B) P(A∪B) = P ( A ) + P ( B ) =P(A)+P(B) =P(A)+P(B).
古典方法是概率论发展初期确定概率的常用方法,故所得的概率又称为古典概率.
在古典方法中, 求事件 A A A 的概率归结为计算 A A A 中含有的样本点的个数和
Ω \Omega Ω 中含有的样本点的总数.所以在计算中经常用到排列组合工具.
例 1.2.2 郑两枚硬币,求出现一个正面一个反面的概率.
解 此例的样本空间为 Ω = { \Omega=\{ Ω={
(正,正), (正, 反), (反, 正), (反, 反)
} \} }. 所以 Ω \Omega Ω中含有样本点的个数为 4 , 事件
"出现一个正面一个反面"含有的样本点的个数为 2 , 因此所求概率为 1 / 2 1 / 2 1/2.
注意,如果将此样本空间记成 Ω 1 = { \Omega_{1}=\{ Ω1={
(二正), (二反),
(一正一反) } \} }, 则此 3个样本点不是等可能的.
在计算古典概率时,一般不用把样本空间详细写出,但一定要保证样本点为等可能.
以下是一些较为有用的模型,请读者熟练掌握和灵活运用.
例 1.2.3 (抽样模型) 一批产品共有 N N N件, 其中 M M M 件是不合格品, N − M N-M N−M
件是合格品. 从中随机取出 n n n 件 ( n ⩽ N ) (n \leqslant N) (n⩽N), 试求事件 A m = A_{m}= Am=
“取出的 n n n 件产品中有 m m m件不合格品” 的概率
( m ⩽ M , n − m ⩽ N − M ) (m \leqslant M, n-m \leqslant N-M) (m⩽M,n−m⩽