概率论与数理统计教程(一)-随机事件与概率04:条件概率

本文详细介绍了条件概率的概念、性质和应用,通过实例解析了条件概率的计算方法,包括乘法公式、全概率公式和贝叶斯公式,并探讨了在特定情况下的概率计算,如摸彩模型、保险问题和敏感性问题调查。条件概率在概率论中起着重要作用,能够帮助解决复杂事件概率的计算问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

§ 1.4 § 1.4 §1.4条件概率
条件概率是概率论中的一个既重要又实用的概念.
1.4.1条件概率的定义
所谓条件概率, 是指在某事件 B B B 发生的条件下,另一事件 A A A 发生的概率,
记为
P ( A ∣ B ) P(A \mid B) P(AB), 它与 P ( A ) P(A) P(A)是不同的两类概率.下面用一个例子说明之.
例 1.4.1 考察有两个小孩的家庭,其样本空间为
Ω = { b b , b g , g b , g g } \Omega=\{b b, b g, g b, g g\} Ω={ bb,bg,gb,gg}, 其中 b b b 代表男孩, g g g 代表女孩, b g b g bg
表示大的是男孩、小的是女孩.其他样本点可类似说明.
Ω \Omega Ω 中 4个样本点等可能情况下,我们来讨论如下一些事件的概率.
(1) 事件 A = A= A=“家中至少有一个女孩” 发生的概率为
P ( A ) = 3 4 . P(A)=\frac{3}{4} . P(A)=43.
(2)若已知事件 B = B= B= “家中至少有一个男孩” 发生, 再求事件 A A A发生的概率为
P ( A ∣ B ) = 2 3 .  P(A \mid B)=\frac{2}{3} \text {. } P(AB)=32
这是因为事件 B B B 的发生, 排除了 g g \mathrm{gg} gg 发生的可能性,
这时样本空间 Ω \Omega Ω 也随之改为 Ω B = \Omega_{B}= ΩB= { b b , b g , g b } \{b b, b g, g b\} { bb,bg,gb},
而在 Ω B \Omega_{B} ΩB 中事件 A A A 只含 2 个样本点, 故
P ( A ∣ B ) = 2 / 3 P(A \mid B)=2 / 3 P(AB)=2/3.这就是条件概率, 它与 (无条件) 概率 P ( A ) P(A) P(A)
是不同的两个概念.
(3)若对上述条件概率的分子分母各除以 4 ,则可得
P ( A ∣ B ) = 2 / 4 3 / 4 = P ( A B ) P ( B ) , P(A \mid B)=\frac{2 / 4}{3 / 4}=\frac{P(A B)}{P(B)}, P(AB)=3/42/4=P(B)P(AB),
其中交事件 A B = A B= AB= “家有一男一女两个小孩”.
这个关系具有一般性,即条件概率是两个无条件概率之商, 这就是条件概率的定义.
定义 1.4.1 设 A A A B B B 是样本空间 Ω \Omega Ω 中的两事件, 若 P ( B ) > 0 P(B)>0 P(B)>0,则称
P ( A ∣ B ) = P ( A B ) P ( B ) P(A \mid B)=\frac{P(A B)}{P(B)} P(AB)=P(B)P(AB)
为 “在 B B B 发生下 A A A 的条件概率”, 简称条件概率.
例 1.4.2 设某样本空间 Ω \Omega Ω含有 25 个等可能的样本点, 事件 A A A 含有 15
个样本点, 事件 B B B 含有 7个样本点,交事件 A B A B AB 含有 5 个样本点,
具体见图1.4.1.
这时有
P ( A ) = 15 25 , P ( B ) = 7 25 , P ( A B ) = 5 25 . \begin{array}{l} P(A)=\frac{15}{25}, \quad P(B)=\frac{7}{25}, \\ P(A B)=\frac{5}{25} . \end{array} P(A)=2515,P(B)=257,P(AB)=255.

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“180px”}
图1.4.1 例 1.4.2 的维恩图
则在事件 B B B 发生的条件下, 事件 A A A的条件概率为
P ( A ∣ B ) = P ( A B ) P ( B ) = 5 / 25 7 / 25 = 5 7 . P(A \mid B)=\frac{P(A B)}{P(B)}=\frac{5 / 25}{7 / 25}=\frac{5}{7} . P(AB)=P(B)P(AB)=7/255/25=75.
此结果也可以如此考虑:事件 B B B 发生, 表明事件 B ˉ \bar{B} Bˉ 不可能发生, 因此
B ˉ \bar{B} Bˉ 中的18 个样本点可以不予考虑, 此时在 B B B 中 7 个样本点中属于
A A A 的只有 5个, 所以 P ( A ∣ B ) = 5 / 7 P(A \mid B)=5 / 7 P(AB)=5/7.这意味着, 计算条件概率
P ( A ∣ B ) P(A \mid B) P(AB)是在样本空间 Ω \Omega Ω 缩小为 Ω B = B \Omega_{B}=B ΩB=B下进行的.
类似地
P ( B ∣ A ) = P ( A B ) P ( A ) = 5 / 25 15 / 25 = 5 15 = 1 3 . P(B \mid A)=\frac{P(A B)}{P(A)}=\frac{5 / 25}{15 / 25}=\frac{5}{15}=\frac{1}{3} . P(BA)=P(A)P(AB)=15/255/25=155=31.
它也可作如上解释.
我们要注意的是:条件概率 P ( A ∣ B ) P(A \mid B) P(AB) 是在给定 B B B 下讨论事件 A A A
的概率,那么概率的性质对 P ( ⋅ ∣ B ) P(\cdot \mid B) P(B) 而言是否都成立呢?譬如,
P ( A ˉ ∣ B ) = 1 − P ( A ∣ B ) , P ( A 1 ∪ A 2 ∣ B ) = P ( A 1 ∣ B ) + P ( A 2 ∣ B ) − P ( A 1 A 2 ∣ B ) \begin{array}{c} P(\bar{A} \mid B)=1-P(A \mid B), \\ P\left(A_{1} \cup A_{2} \mid B\right)=P\left(A_{1} \mid B\right)+P\left(A_{2} \mid B\right)-P\left(A_{1} A_{2} \mid B\right) \end{array} P(AˉB)=1P(AB),P(A1A2B)=P(A1B)+P(A2B)P(A1A2B)

这些概率性质都成立吗?为此我们只要能验证条件概率满足三条公理即可回答这个问题.
性质 1.4.1条件概率是概率, 即若设 P ( B ) > 0 P(B)>0 P(B)>0, 则
(1) P ( A ∣ B ) ⩾ 0 , A ∈ F P(A \mid B) \geqslant 0, A \in \mathscr{F} P(AB)0,AF.
(2) P ( Ω ∣ B ) = 1 P(\Omega \mid B)=1 P(ΩB)=1.
(3) 若 F \mathscr{F} F 中的 A 1 , A 2 , ⋯   , A n , ⋯ A_{1}, A_{2}, \cdots, A_{n}, \cdots A1,A2,,An,
互不相容,则
P ( ⋃ n = 1 ∞ A n ∣ B ) = ∑ n = 1 ∞ P ( A n ∣ B ) . P\left(\bigcup_{n=1}^{\infty} A_{n} \mid B\right)=\sum_{n=1}^{\infty} P\left(A_{n} \mid B\right) . P(n=1AnB)=n=1P(AnB).
证明用条件概率的定义很容易证明 (1) 和 (2), 下面来证明 (3).
因为 A 1 , A 2 , ⋯ A_{1}, A_{2}, \cdots A1,A2,, A n , ⋯ A_{n}, \cdots An, 互不相容,
所以 A 1 B , A 2 B , ⋯   , A n B , ⋯ A_{1} B, A_{2} B, \cdots, A_{n} B, \cdots A1B,A2B,,AnB, 也互不相容,故
P ( ⋃ n = 1 ∞ A n ∣ B ) = P ( ( ⋃ n = 1 ∞ A n ) B ) P ( B ) = P ( ⋃ n = 1 ∞ ( A n B ) ) P ( B ) = ∑ n = 1 ∞ P ( A n B ) P ( B ) = ∑ n = 1 ∞ P ( A n ∣ B ) . \begin{aligned} P\left(\bigcup_{n=1}^{\infty} A_{n} \mid B\right) & =\frac{P\left(\left(\bigcup_{n=1}^{\infty} A_{n}\right) B\right)}{P(B)}=\frac{P\left(\bigcup_{n=1}^{\infty}\left(A_{n} B\right)\right)}{P(B)} \\ & =\sum_{n=1}^{\infty} \frac{P\left(A_{n} B\right)}{P(B)}=\sum_{n=1}^{\infty} P\left(A_{n} \mid B\right) . \end{aligned} P(n=1AnB)=P(B)P((n=1An)B)=P(B)P(n=1(AnB))=n=1P(B)P(AnB)=n=1P(AnB).
以下给出条件概率特有的三个非常实用的公式:乘法公式、全概率公式和贝叶斯公式.这些公式可以帮助我们计算一些复杂事件的概率.
1.4.2 乘法公式
性质1.4.2 乘法公式
(1) 若 P ( B ) > 0 P(B)>0 P(B)>0,则
P ( A B ) = P ( B ) P ( A ∣ B ) . P(A B)=P(B) P(A \mid B) . P(AB)=P(B)P(AB).
(2) 若 P ( A 1 A 2 ⋯ A n − 1 ) > 0 P\left(A_{1} A_{2} \cdots A_{n-1}\right)>0 P(A1A2An1)>0,则
P ( A 1 A 2 ⋯ A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) ⋯ P ( A n ∣ A 1 A 2 ⋯ A n − 1 ) . P\left(A_{1} A_{2} \cdots A_{n}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1} A_{2}\right) \cdots P\left(A_{n} \mid A_{1} A_{2} \cdots A_{n-1}\right) . P(A1A2An)=P(A1)P(A2A1)P(A3A1A2)P(AnA1A

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值