概率论与数理统计教程(一)-随机事件与概率05:独立性

本文详细介绍了概率论中的独立性概念,包括两个事件的独立性、多个事件的相互独立性以及试验之间的独立性。通过举例和证明,阐述了独立事件的概率计算原则,并提供了若干例题来说明如何判断和应用独立性。此外,还探讨了独立事件在概率计算和实际问题中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

§ 1.5 § 1.5 §1.5独立性
独立性是概率论中又一个重要概念,利用独立性可以简化概率的计算.
下面先讨论两个事件之间的独立性,然后讨论多个事件之间的相互独立性,
最后讨论试验之间的独立性.
1.5.1两个事件的独立性
两个事件之间的独立性是指:一个事件的发生不影响另一个事件的发生.这在实际问题中是很多的,譬如在掷两颗骰子的试验中,记事件 A A A
为 “第一颗骰子的点数为 1”, 记事件 B B B 为 “第二颗骰子的点数为4”. 则显然
A A A B B B 的发生是相互不影响的.
另外,从概率的角度看, 事件 A A A 的条件概率 P ( A ∣ B ) P(A \mid B) P(AB)
与无条件概率 P ( A ) P(A) P(A) 的差别在于: 事件 B B B 的发生改变了事件 A A A
发生的概率,也即事件 B B B 对事件 A A A 有某种 “影响”. 如果事件 A A A
B B B的发生是相互不影响的, 则有 P ( A ∣ B ) = P ( A ) P(A \mid B)=P(A) P(AB)=P(A)
P ( B ∣ A ) = P ( B ) P(B \mid A)=P(B) P(BA)=P(B),它们都等价于
P ( A B ) = P ( A ) P ( B ) . P(A B)=P(A) P(B) . P(AB)=P(A)P(B).
另外对 P ( B ) = 0 P(B)=0 P(B)=0, 或 P ( A ) = 0 , ( 1.5.1 ) P(A)=0,(1.5 .1) P(A)=0,(1.5.1) 式仍然成立. 为此, 我们用
( 1.5.1 ) (1.5 .1) (1.5.1)式作为两个事件相互独立的定义.
定义 1.5.1 如果(1.5.1) 式成立,则称事件 A A A B B B 相互独立, 简称 A A A
B B B 独立.否则称 A A A B B B不独立或相依.
在许多实际问题中,两个事件相互独立大多是根据经验(相互有无影响) 来判断的,
如上述掷两颗骰子问题中 A A A B B B的独立性.但在有些问题中,
有时也用(1.5.1)式来判断两个事件间的独立性.
例 1.5.1 事件独立的例子
(1) 从一副 52张的扑克牌中任取 1 张, 以 A A A 记事件 “取到黑桃”, 以 B B B
记事件"取到 J \mathrm{J} J“. 则因为 P ( A ) = 1 / 4 , P ( B ) = 4 / 52 = 1 / 13 P(A)=1 / 4, P(B)=4 / 52=1 / 13 P(A)=1/4,P(B)=4/52=1/13,
A B A B AB 表示 “取到黑桃 J \mathrm{J} J”, 故 P ( A B ) = P(A B)= P(AB)= 1 / 52 1 / 52 1/52,所以 A A A
B B B 相互独立.
(2) 考虑有三个小孩的家庭,并设所有 8种情况
b b b , b b g , b g b , g b b , b g g , g b g , g g b , g g g b b b, \quad b b g, \quad b g b, \quad g b b, \quad b g g, \quad g b g, \quad g g b, \quad g g g bbb,bbg,bgb,gbb,bgg,gbg,ggb,ggg
是等可能的,其中 b b b 表示男孩, g g g 表示女孩. 以 A A A 记事件
“家中男女孩都有”, 以 B B B 记事件 “家中至多一个女孩”. 则因为
P ( A ) = 6 / 8 , P ( B ) = 4 / 8 P(A)=6 / 8, P(B)=4 / 8 P(A)=6/8,P(B)=4/8, 而 A B A B AB 表示 “家中恰有一个女孩”, 故
P ( A B ) = 3 / 8 P(A B)=3 / 8 P(AB)=3/8, 所以 A A A B B B 相互独立.
(3) 当考察的家庭有两个小孩时, 样本空间只含 4个样本点, 它们是
b b , b g , g b , g g . b b, \quad b g, g b, \quad g g . bb,bg,gb,gg.
若事件 A , B A, B A,B 仍如 (2) 所设, 则 P ( A ) = 2 / 4 , P ( B ) = 3 / 4 P(A)=2 / 4, P(B)=3 / 4 P(A)=2/4,P(B)=3/4,
P ( A B ) = 2 / 4 P(A B)=2 / 4 P(AB)=2/4, 由于 P ( A B ) ≠ P ( A ) P ( B ) P(A B) \neq P(A) P(B) P(AB)=P(A)P(B), 所以 A A A B B B不独立.
性质 1.5.1 若事件 A A A B B B 独立, 则 A A A B ˉ \bar{B} Bˉ 独立, A ˉ \bar{A} Aˉ
B B B 独立, A ˉ \bar{A} Aˉ B ˉ \bar{B} Bˉ独立.
证明由概率的性质知
P ( A B ˉ ) = P ( A ) − P ( A B ) . P(A \bar{B})=P(A)-P(A B) . P(ABˉ)=P(A)P(AB).
又由 A A A B B B的独立性知
P ( A B ) = P ( A ) P ( B ) , P(A B)=P(A) P(B), P(AB)=P(A)P(B),
所以
P ( A B ˉ ) = P ( A ) − P ( A ) P ( B ) = P ( A ) [ 1 − P ( B ) ] = P ( A ) P ( B ˉ ) , P(A \bar{B})=P(A)-P(A) P(B)=P(A)[1-P(B)]=P(A) P(\bar{B}), P(ABˉ)=P(A)P(A)P(B)=P(A)[1P(B)]=P(A)P(Bˉ),
这表明 A A A B ˉ \bar{B} Bˉ 独立. 类似可证 A ˉ \bar{A} Aˉ B B B 独立, A ˉ \bar{A} Aˉ
B ˉ \bar{B} Bˉ 独立.
对于性质 1.5.1 的直观理解也是容易的:因为 A A A B B B 相互独立, 则 A A A
的发生不影响 B B B 的发生,那么 A A A 的发生也不会影响 B B B 的不发生, A A A
的不发生也不会影响 B B B的发生, A A A的不发生也不会影响 B B B 的不发生.
1.5.2多个事件的相互独立性
首先研究三个事件的相互独立性,对此我们先给出以下的定义
定义 1.5.2 设 A , B , C A, B, C A,B,C 是三个事件,如果有
{ P ( A B ) = P ( A ) P ( B ) , P ( A C ) = P ( A ) P ( C ) , P ( B C ) = P ( B ) P ( C ) , \left\{\begin{array}{l} P(A B)=P(A) P(B), \\ P(A C)=P(A) P(C ), \\ P(B C)=P(B) P(C ), \end{array}\right.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值