§ 2.6 随机变量函数的分布
设 y = g ( x ) y=g(x) y=g(x) 是定义在 R \mathbf{R} R 上的一个函数, X X X 是一个随机变量, 那么
Y = g ( X ) Y=g(X) Y=g(X) 作为 X X X 的函数, 同样也是一个随机变量. 在实际问题中,
我们经常感兴趣的问题是: 已知随机变量 X X X 的分布,如何求出另一个随机变量
Y = g ( X ) Y=g(X) Y=g(X) 的分布.
寻求随机变量函数的分布, 是概率论的基本技巧,
在概率论与数理统计中经常要用到这些技巧.
下面对离散和连续两种场合分别讨论随机变量函数的分布.
2.6.1 离散随机变量函数的分布
离散随机变量函数的分布是比较容易求得的. 设 X X X 是离散随机变量, X X X
的分布列为
X X X x 1 x_{1} x1 x 2 x_{2} x2 ⋯ \cdots ⋯ x n x_{n} xn ⋯ \cdots ⋯
P P P p ( x 1 ) p\left(x_{1}\right) p(x1) p ( x 2 ) p\left(x_{2}\right) p(x2) ⋯ \cdots ⋯ p ( x n ) p\left(x_{n}\right) p(xn) ⋯ \cdots ⋯
显然 Y = g ( X ) Y=g(X) Y=g(X) 也是一个离散随机变量, 此时 Y Y Y
的分布列就可以很简单地表示为
Y Y Y g ( x 1 ) g\left(x_{1}\right) g(x1) g ( x 2 ) g\left(x_{2}\right) g(x2) ⋯ \cdots ⋯ g ( x n ) g\left(x_{n}\right) g(xn) ⋯ \cdots ⋯
P P P p ( x 1 ) p\left(x_{1}\right) p(x1) p ( x 2 ) p\left(x_{2}\right) p(x2) ⋯ \cdots ⋯ p ( x n ) p\left(x_{n}\right) p(xn) ⋯ \cdots ⋯
当
g ( x 1 ) , g ( x 2 ) , ⋯ , g ( x n ) , ⋯ g\left(x_{1}\right), g\left(x_{2}\right), \cdots, g\left(x_{n}\right), \cdots g(x1),g(x2),⋯,g(xn),⋯
中有某些值相等时, 则把那些相等的值分别合并, 并把对应的概率相加即可.
例 2.6.1 已知随机变量 X X X 的分布列如下, 求 Y = X 2 + X Y=X^{2}+X Y=X2+X 的分布列.
X X X -2 -1 0 1 2
P P P 0.2 0.1 0.1 0.3 0.3
解 Y = X 2 + X Y=X^{2}+X Y=X2+X 的分布列为
Y Y Y 2 0 0 2 6
P P P 0.2 0.1 0.1 0.3 0.3
再对相等的值合并, 得
Y Y Y 0 2 6
P P P 0.2 0.5 0.3
2.6.2 连续随机变量函数的分布
离散随机变量的函数仍是一个离散随机变量. 但连续随机变量 X X X 的函数
Y = g ( X ) Y=g(X) Y=g(X)不一定为连续随机变量, 以下我们分几种情况讨论 Y = g ( X ) Y=g(X) Y=g(X) 的分布.
一、当 Y = g ( X ) Y=g(X) Y=g(X) 为离散随机变量
在这种情况下, 只须将 Y Y Y 的可能取值一一列出,再将 Y Y Y
取各种可能值的概率求出即可. 例如, 设
X ∼ N ( μ , σ 2 ) X \sim N\left(\mu, \sigma^{2}\right) X∼N(μ,σ2) ,
Y = { 0 , X < μ , 1 , X ⩾ μ . Y=\left\{\begin{array}{ll} 0, & X<\mu, \\ 1, & X \geqslant \mu . \end{array}\right. Y={
0,1,X<μ,X⩾μ.
则很容易计算得: Y Y Y 服从 p = 0.5 p=0.5 p=0.5 的 0-1 分布.
二、当 g ( x ) g(x) g(x) 为严格单调函数时
在这种情况下有以下定理:
定理 2.6.1 设 X X X 是连续随机变量, 其密度函数为 p x ( x ) . Y = g ( X ) p_{x}(x) . Y=g(X) px(x).Y=g(X)
是另一个连续随机变量. 若 y = g ( x ) y=g(x) y=g(x) 严格单调, 其反函数 h ( y ) h(y) h(y)
有连续导函数, 则 Y = g ( X ) Y=g(X) Y=g(X) 的密度函数为
p y ( y ) = { p X [ h ( y ) ] ∣ h ′ ( y ) ∣ , a < y < b , 0 , 其他. p_{y}(y)=\left\{\begin{array}{ll} p_{X}[h(y)]\left|h^{\prime}(y)\right|, & a<y<b, \\ 0, & \text { 其他. } \end{array}\right. py(y)={
pX[h(y)]∣h′(y)∣,0,a<y<b, 其他.
其中
a = min { g ( − ∞ ) , g ( ∞ ) } , b = max { g ( − ∞ ) , g ( ∞ ) } a=\min \{g(-\infty), g(\infty)\}, b=\max \{g(-\infty), g(\infty)\} a=min{
g(−∞),g(∞)},b=max{
g(−∞),g(∞)}.
证明 不妨设 g ( x ) g(x) g(x) 是严格单调增函数, 这时它的反函数 h ( y ) h(y) h(y)
也是严格单调增函数, 且 h ′ ( y ) > 0 h^{\prime}(y)>0 h′(y)>0. 记
a = g ( − ∞ ) , b = g ( ∞ ) a=g(-\infty), b=g(\infty) a=g(−∞),b=g(∞), 这意味着 y = g ( x ) y=g(x) y=g(x) 仅在区间 ( a , b ) (a, b) (a,b) 取值,
于是
当 y < a y<a y<a 时,
F Y ( y ) = P ( Y ⩽ y ) = 0 ; F_{Y}(y)=P(Y \leqslant y)=0 ; FY(y)=P(Y⩽y)=0;
当 y > b y>b y>b 时,
F Y ( y ) = P ( Y ⩽ y ) = 1 ; F_{Y}(y)=P(Y \leqslant y)=1 ; FY(y)=P(Y⩽y)=1;
当 a ⩽ y ⩽ b a \leqslant y \leqslant b a⩽y⩽b 时,
F Y ( y ) = P ( Y ⩽ y ) = P ( g ( X ) ⩽ y ) = P ( X ⩽ h ( y ) ) = ∫ − ∞ h ( y ) p X ( x ) d x . F_{Y}(y)=P(Y \leqslant y)=P(g(X) \leqslant y)=P(X \leqslant h(y))=\int_{-\infty}^{h(y)} p_{X}(x) \mathrm{d} x . FY(y)=P(Y⩽y)=P(g(X)⩽y)=P(X⩽h(y))=∫−∞h(y)pX(x)dx.
由此得 Y Y Y 的密度函数为
p Y ( y ) = { p X [ h ( y ) ] h ′ ( y ) , a < y < b , 0 , 其他. p_{Y}(y)=\left\{\begin{array}{ll} p_{X}[h(y)] h^{\prime}(y), & a<y<b, \\ 0, & \text { 其他. } \end{array}\right. pY(y)={
pX[h(y)]h′(y),0,a<y<b, 其他.
同理可证当 g ( x ) g(x) g(x) 是严格单调减函数时, 结论也成立. 但此时要注意
h ′ ( y ) < 0 h^{\prime}(y)<0 h′(y)<0, 故要加绝对值符号, 这时 a = g ( ∞ ) , b = g ( − ∞ ) a=g(\infty), b=g(-\infty) a=g(∞),b=g(−∞).
综上所述, 定理得证.
利用以上定理,我们来证明几个很有用的结论,并用定理形式表示.
定理 2.6.2 设随机变量 X X X 服从正态分布 N ( μ , σ 2 ) N\left(\mu, \sigma^{2}\right) N(μ,σ2),
则当 a ≠ 0 a \neq 0 a=0 时, 有 Y = a X + b ∼ Y=a X+b \sim Y=aX+b∼
N ( a μ + b , a 2 σ 2 ) N\left(a \mu+b, a^{2} \sigma^{2}\right) N(aμ+b,a2σ2).
证明 当 a > 0 a>0 a>0 时, Y = a X + b Y=a X+b Y=aX+b 是严格增函数, 仍在 ( − ∞ ,