复变函数论1-1-复数1:复数域【z=x+yi,实数x和y分别称为复数z的实部、虚部】【x+yi、x−yi互为共轭复数】【两复数的和差乘商仍是复数】【在复数域中不能规定大小关系】

本文介绍了复数的概念,包括复数的定义、实部和虚部、共轭复数,以及复数的加法、减法、乘法和除法的运算法则。复数的运算遵循实数运算的基本定律,但在复数域中无法定义大小关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、复数域

在这里插入图片描述

形如

z = x + i y  或  z = x + y i z=x+\mathrm{i} y \text { 或 } z=x+y \mathrm{i} z=x+iy  z=x+yi

的数, 称为复数, 其中 x x x y y y 是任意的实数,

  • 实数单位 1 1 1
  • i \mathrm{i} i 称作 虚数单位,满足 i 2 = − 1 \mathrm{i}^{2}=-1 i2=1

实数 x x x y y y 分别称为复数 z z z实部虚部, 常记为

x = Re ⁡ z , y = Im ⁡ z . x=\operatorname{Re} z, \quad y=\operatorname{Im} z . x=Rez,y=Imz.

复数 z 1 = x 1 + i y 1 z_{1}=x_{1}+\mathrm{i} y_{1} z1=x1+iy1 z 2 = x 2 + i y 2 z_{2}=x_{2}+\mathrm{i} y_{2} z2=x2+iy2 相等, 是指它们的实部与实部相等, 虚部与虚部相等, 即

x 1 + i y 1 = x 2 + i y 2 x_{1}+\mathrm{i} y_{1}=x_{2}+\mathrm{i} y_{2} x1+iy1=x2+iy2

必须且只需

x 1 = x 2 , y 1 = y 2 x_{1}=x_{2}, \quad y_{1}=y_{2} x1=x2,y1=y2

虚部为零的复数就可看作实数, 即 x + i ⋅ 0 = x x+\mathrm{i} \cdot 0=x x+i0=x; 因此, 全体实数是全体复数的一部分.

  • 特别, 0 + i ⋅ 0 = 0 0+\mathrm{i} \cdot 0=0 0+i0=0.
  • 虚部不为零的复数称为虚数,
  • 实部为零且虚部不为零的复数称为纯虚数.

复数 x + i y x+\mathrm{i} y x+iy x − i y x-\mathrm{i} y xiy 称为互为共轭复数, 即 x + i y x+\mathrm{i} y x+iy

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值