复变函数论(八)-解析延拓4-多角形区域的共形映射2:退化情形

首先,由于分式线性变换的保圆周性及定义 7.3 ,我们易得:

定理 8.8

两直线在无穷远点的交角, 等于它们在第二交点 (有限点) 的交角反号.


L 1 , L 2 L_{1}, L_{2} L1,L2 是从无穷远点出发的两条射线, 为明了起见,还设它们在有限点 ξ 0 \xi_{0} ξ0 ( ξ 0 ≠ 0 ) \left(\xi_{0} \neq 0\right) (ξ0=0) 相交.通过反演变换 w = 1 z w=\frac{1}{z} w=z1 后, 得到的像曲线为经过 w = 0 w=0 w=0 的两条圆弧 Γ 1 \Gamma_{1} Γ1 Γ 2 \Gamma_{2} Γ2, 于是其第二交点为 w = 1 ξ 0 w=\frac{1}{\xi_{0}} w=ξ01.圆弧 Γ 1 \Gamma_{1} Γ1 Γ 2 \Gamma_{2} Γ2 在两交点处的交角必互为相反数(图8.20).再由 w = 1 z w=\frac{1}{z} w=z1 在点 ξ 0 \xi_{0} ξ0 保角, 又由定义 7.3 , w = 1 z 7.3, w=\frac{1}{z} 7.3,w=z1 z = ∞ z=\infty z= 处保角,定理就得到证明.

在这里插入图片描述

其次,上面定理 8.7 的下列两个退化情形是很有用的:

(1)

n n n 角形 P n P_{n} Pn 有一个顶点是无穷远点的像, 即 a 1 , a 2 , ⋯   , a n a_{1}, a_{2}, \cdots, a_{n} a1,a2,,an 中有一个, 例如 a n a_{n} an = ∞ =\infty =.

为了要把这种情形化成上面定理的情形,我们作一个分式线性变换

ζ = − 1 z + a n ′ \zeta=-\frac{1}{z}+a_{n}^{\prime} ζ=z1+an

把上半平面 Im ⁡ z > 0 \operatorname{Im} z>0 Imz>0 共形映射成上半平面 Im ⁡ ζ > 0 \operatorname{Im} \zeta>0 Imζ>0, 且把点 a 1 , a 2 , ⋯   , a n = ∞ a_{1}, a_{2}, \cdots, a_{n}=\infty a1,a2,,an=
分别变成有限点 a 1 ′ , a 2 ′ , ⋯   , a n ′ a_{1}^{\prime}, a_{2}^{\prime}, \cdots, a_{n}^{\prime} a1,a2,,an(见下面注).

应用公式 (8.9),我们得出

w = C ′ ∫ ζ 0 ζ ( ζ − a 1 ′ ) a 1 − 1 ( ζ − a 2 ′ ) a 2 − 1 ⋯ ( ζ − a n ′ ) a n − 1   d ζ + C 1 ′ = C ′ ∫ z 0 z ( a n ′ − a 1 ′ − 1 z ) a 1 − 1 ( a n ′ − a 2 ′ − 1 z ) a 2 − 1 ⋯ ⋅ ( − 1 z ) a n − 1 d z z 2 + C 1 ′ . \begin{aligned} w & =C^{\prime} \int_{\zeta_{0}}^{\zeta}\left(\zeta-a_{1}^{\prime}\right)^{a_{1}-1}\left(\zeta-a_{2}^{\prime}\right)^{a_{2}-1} \cdots\left(\zeta-a_{n}^{\prime}\right)^{a_{n}-1} \mathrm{~d} \zeta+C_{1}^{\prime} \\ & =C^{\prime} \int_{z_{0}}^{z}\left(a_{n}^{\prime}-a_{1}^{\prime}-\frac{1}{z}\right)^{a_{1}-1}\left(a_{n}^{\prime}-a_{2}^{\prime}-\frac{1}{z}\right)^{a_{2}-1} \cdots \cdot\left(-\frac{1}{z}\right)^{a_{n}-1} \frac{\mathrm{d} z}{z^{2}}+C_{1}^{\prime} . \end{aligned}

  • 25
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值