复变函数论6-留数理论及其应用1-3-留数的求法1:留数的通用求法【设a为f的n阶极点,f(z)=φ(z)/(z-a)ⁿ,若φ(z)在点a解析,则:Resf(z)=φ⁽ⁿ⁻¹⁾(a)/(n-1)!】

定理 5.4

如果函数 f ( z ) f(z) f(z) 以点 a a a 为孤立奇点, 则下列三条是等价的. 因此,它们中的任何一条都是 m m m 阶极点的特征.
(1) f ( z ) f(z) f(z) 在点 a a a 的主要部分为
c − m ( z − a ) m + ⋯ + c − 1 z − a ( c − m ≠ 0 ) . \cfrac{c_{-m}}{(z-a)^{m}}+\cdots+\cfrac{c_{-1}}{z-a} \quad\left(c_{-m} \neq 0\right) . (za)mcm++zac1(cm=0).
(2) f ( z ) f(z) f(z) 在点 a a a 的某去心邻域内能表示成
f ( z ) = λ ( z ) ( z − a ) m , f(z)=\cfrac{\lambda(z)}{(z-a)^{m}}, f(z)=(za)mλ(z),
其中 λ ( z ) \lambda(z) λ(z) 在点 a a a 的邻域内解析, 且 λ ( a ) ≠ 0 \lambda(a) \neq 0 λ(a)=0.
(3) g ( z ) = 1 f ( z ) g(z)=\cfrac{1}{f(z)} g(z)=f(z)1 以点 a a a m m m 阶零点(可去奇点要当作解析点看, 只要令 g ( a ) = 0 g(a)=0 g(a)=0 ).

(3)表明: f ( z ) f(z) f(z) 以点 a a a m m m 阶极点 ⇔ 1 f ( z ) \Leftrightarrow \cfrac{1}{f(z)} f(z)1 以点 a a a m m m 阶零点.

定义 6.1

设函数 f ( z ) f(z) f(z) 以有限点 a a a孤立奇点, 即 f ( z ) f(z) f(z) 在点 a a a的某去心邻域 0 < 0< 0< ∣ z − a ∣ < R |z-a|<R za<R 内解析,则称积分

1 2 π i ∫ Γ f ( z ) d z ( Γ : ∣ z − a ∣ = ρ , 0 < ρ < R ) \cfrac{1}{2 \pi \mathrm{i}} \int_{\Gamma} f(z) \mathrm{d} z \quad(\Gamma:|z-a|=\rho, 0<\rho<R) 2πi1Γf(z)dz(Γ:za=ρ,0<ρ<R)

f ( z ) f(z) f(z) 在点 a a a留数 (residue), 记为 Res ⁡ f ( z ) \operatorname{Res} f(z) Resf(z).

由柯西积分定理 3.10 知道, 当 0 < ρ < R 0<\rho<R 0<ρ<R 时, 留数的值与 ρ \rho ρ 无关,利用洛朗系数公式(5.5), 有

1 2 π i ∫ Γ f ( z ) d z = c − 1 , ( 6.1 ) \cfrac{1}{2 \pi \mathrm{i}} \int_{\Gamma} f(z) \mathrm{d} z=c_{-1}, \quad\quad(6.1) 2πi1Γf(z)dz=c1,(6.1)

Res ⁡ f ( z ) = c − 1 .  \operatorname{Res} f(z)=c_{-1} \text {. } Resf(z)=c1

这里 c − 1 c_{-1} c1 f ( z ) f(z) f(z) z = a z=a z=a 处的洛朗展式中 1 z − a \cfrac{1}{z-a} za1这一项的系数.


为了应用留数定理求周线积分, 首先应该掌握求留数的方法.

而计算在孤立奇点 a a a的留数时, 我们只关心其洛朗展式中的 1 z − a \cfrac{1}{z-a} za1 这一项的系数,所以应用洛朗展式求留数是一般方法.

下面的定理是求 n n n 阶极点处留数的公式,免得每求一个极点处的留数, 都要去求一次洛朗展式. 不过这个公式对于阶数过高(例如超过三阶) 的极点, 计算起来也未必简单.

定理 6.2

a a a f ( z ) f(z) f(z) n n n 阶极点,

f ( z ) = φ ( z ) ( z − a ) n , f(z)=\cfrac{\varphi(z)}{(z-a)^{n}}, f(z)=(za)nφ(z),

其中 φ ( z ) \varphi(z) φ(z) (由定理 5.4) 在点 a a a 解析, φ ( a ) ≠ 0 \varphi(a) \neq 0 φ(a)=0, 则

Res ⁡ z = a f ( z ) = φ ( n − 1 ) ( a ) ( n − 1 ) ! . ( 6.3 ) \operatorname{Res}_{z=a} f(z)=\cfrac{\varphi^{(n-1)}(a)}{(n-1) !} . \quad\quad(6.3) Resz=af(z)=(n1)!φ(n1)(a).(6.3)

这里符号 φ ( 0 ) ( a ) \varphi^{(0)}(a) φ(0)(a) 代表 φ ( a ) \varphi(a) φ(a), 且有 φ ( n − 1 ) ( a ) = lim ⁡ z → a

  • 18
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值