实数 a a a 的绝对值定义为
∣ a ∣ = { a , a ⩾ 0 , − a , a < 0. |a|=\left\{\begin{array}{ll} a, & a \geqslant 0, \\ -a, & a<0 . \end{array}\right. ∣a∣={
a,−a,a⩾0,a<0.
从数轴上看, 数 a a a 的绝对值 ∣ a ∣ |a| ∣a∣ 就是点 a a a 到原点的距离.
实数的绝对值有如下一些性质:
- ∣ a ∣ = ∣ − a ∣ ⩾ 0 |a|=|-a| \geqslant 0 ∣a∣=∣−a∣⩾0, 当且仅当 a = 0 a=0 a=0 时有 ∣ a ∣ = 0 |a|=0 ∣a∣=