数学分析(一)-实数集与函数3-函数概念3:函数的四则运算

本文探讨了数学分析中函数的四则运算法则,包括函数的加减乘除定义,强调了在进行运算时,定义域的交集与商运算时分母不为零的重要性。举例说明了当定义域无交集时,四则运算无法进行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

三、函数的四则运算

给定两个函数 f , x ∈ D 1 f, x \in D_{1} f,xD1 g , x ∈ D 2 g, x \in D_{2} g,xD2. 记 D = D 1 ∩ D 2 D=D_{1} \cap D_{2} D=D1D2, 并设 D ≠ ∅ D \neq \varnothing D=. 我们定义 f f f g g g D D D 上的和、差、积运算如下:
F ( x ) = f ( x ) + g ( x ) , x ∈ D , G ( x ) = f ( x ) − g ( x ) , x ∈ D , H ( x ) = f ( x ) g ( x ) , x ∈ D . \begin{array}{l} F(x)=f(x)+g(x), x \in D, \\ G(x)=f(x)-g(x), x \in D, \\ H(x)=f(x) g(x), x \in D . \end{array}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值