三、函数的四则运算
给定两个函数 f , x ∈ D 1 f, x \in D_{1} f,x∈D1 和 g , x ∈ D 2 g, x \in D_{2} g,x∈D2. 记 D = D 1 ∩ D 2 D=D_{1} \cap D_{2} D=D1∩D2, 并设 D ≠ ∅ D \neq \varnothing D=∅. 我们定义 f f f 与 g g g 在 D D D 上的和、差、积运算如下:
F ( x ) = f ( x ) + g ( x ) , x ∈ D , G ( x ) = f ( x ) − g ( x ) , x ∈ D , H ( x ) = f ( x ) g ( x ) , x ∈ D . \begin{array}{l} F(x)=f(x)+g(x), x \in D, \\ G(x)=f(x)-g(x), x \in D, \\ H(x)=f(x) g(x), x \in D . \end{array}