一、对数函数一般形式及定义域
对数函数一形式为 y = log a x ( a > 0 , a ≠ 1 ) \left.\mathrm{y}=\log _{a} x ( \mathrm{a}>0 , \mathrm{a} \neq 1\right) y=logax(a>0,a=1) ,对数函数的定义域为: ( 0 , + ∞ ) (0,+\infty) (0,+∞) ,图像如下:
二、对数函数的值域
对数函数是指数函数的反函数,即对数函数 y = log a x ( a > 0 , a ≠ 1 ) \mathrm{y}=\log _{a} x\left(\mathrm{a}>0 , \mathrm{a} \neq 1 )\right. y=logax(a>0,a=1) 与指数函数 x = a y \mathrm{x}=a^{y} x=ay 互为反函数。根据反函数的性质反函数的值域是原函数的定义域,反函数的定义域是原函数的值域,可得对数函数的值域是指数函数的定义域,指数函数的定义域为全体实数 R R R ,故对数函数的值域为实数集 R R R ,即 ( − ∞ , + ∞ ) (-\infty,+\infty) (−∞,+∞) 。
三、对数函数的定点
对于对数函数 y = log a x ( a > 0 , a ≠ 1 ) \mathrm{y}=\log _{a} x(\mathrm{a}>0 , \mathrm{a} \neq 1) y=logax(a>0,a=1) ,当 y = 0 \mathrm{y}=0 y=0 时,即 log a x = 0 \log _{a} x=0