数学分析(一)-实数集与函数3-函数概念6-基本初等函数3-1:对数函数(logₐx)【a>0,a≠1】【定义域:(0,+∞);值域:(-∞,+∞),过(1,0)】【0<a<1,减函;a>1,增函】

本文详细介绍了对数函数的定义域、值域、定点、单调性、奇偶性、周期性、对称性、最值、零点以及底数的影响。对数函数y=logₐx(a>0,a≠1)的定义域为(0,+∞),值域为(-∞,+∞),其单调性取决于底数a,a>1时为增函数,0<a<1时为减函数。对数函数图像必过(1,0)点,并且有唯一零点x=1。" 93465342,8089707,数据库规范化设计:理解函数依赖与范式,"['数据库理论', '关系数据库', '数据规范化', '数据库设计']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、对数函数一般形式及定义域

对数函数一形式为 y = log ⁡ a x ( a > 0 , a ≠ 1 ) \left.\mathrm{y}=\log _{a} x ( \mathrm{a}>0 , \mathrm{a} \neq 1\right) y=logaxa>0a=1) ,对数函数的定义域为: ( 0 , + ∞ ) (0,+\infty) (0,+) ,图像如下:

在这里插入图片描述

二、对数函数的值域

对数函数是指数函数的反函数,即对数函数 y = log ⁡ a x ( a > 0 , a ≠ 1 ) \mathrm{y}=\log _{a} x\left(\mathrm{a}>0 , \mathrm{a} \neq 1 )\right. y=logax(a>0a=1 与指数函数 x = a y \mathrm{x}=a^{y} x=ay 互为反函数。根据反函数的性质反函数的值域是原函数的定义域,反函数的定义域是原函数的值域,可得对数函数的值域是指数函数的定义域,指数函数的定义域为全体实数 R R R ,故对数函数的值域为实数集 R R R ,即 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)

三、对数函数的定点

对于对数函数 y = log ⁡ a x ( a > 0 , a ≠ 1 ) \mathrm{y}=\log _{a} x(\mathrm{a}>0 , \mathrm{a} \neq 1) y=logax(a>0a=1) ,当 y = 0 \mathrm{y}=0 y=0 时,即 log ⁡ a x = 0 \log _{a} x=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值