数学分析(八)-不定积分1-1-不定积分概念2:基本积分表

本文介绍了不定积分的概念,强调了积分法作为微分法的逆运算的重要性,并给出了原函数和不定积分的定义。讨论了函数存在原函数的条件,阐述了不定积分的几何意义,以及介绍了基本积分公式。此外,还提供了几个不定积分的例子和练习题。
摘要由CSDN通过智能技术生成

不定积分
§ 1 不定积分概念与基本积分公式
正如加法有其逆运算减法, 乘法有其逆运算除法一样,
微分法也有它的逆运算------积分法. 我们已经知道,
微分法的基本问题是研究如何从已知函数求出它的导函数,
那么与之相反的问题是: 求一个未知函数,
使其导函数恰好是某一已知函数.提出这个逆问题,
首先是因为它出现在许多实际问题之中. 例如:
已知速度求路程;已知加速度求速度; 已知曲线上每一点处的切线斜率
(或斜率所满足的某一规律),求曲线方程; 等等.本章与其后两章
(定积分与定积分的应用) 构成一元函数积分学.
一、原函数与不定积分
定义 1 设函数 f f f F F F 在区间 I I I 上都有定义. 若
F ′ ( x ) = f ( x ) , x ∈ I , F^{\prime}(x)=f(x), \quad x \in I, F(x)=f(x),xI,
则称 F F F f f f 在区间 I I I 上的一个原函数.
例如, 1 3 x 3 \frac{1}{3} x^{3} 31x3 x 2 x^{2} x2 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)
上的一个原函数, 因为 ( 1 3 x 3 ) ′ = x 2 \left(\frac{1}{3} x^{3}\right)^{\prime}=x^{2} (31x3)=x2;
又如 − 1 2 cos ⁡ 2 x -\frac{1}{2} \cos 2 x 21cos2x − 1 2 cos ⁡ 2 x + 1 -\frac{1}{2} \cos 2 x+1 21cos2x+1 都是 sin ⁡ 2 x \sin 2 x sin2x
( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 上的原函数, 因为
( − 1 2 cos ⁡ 2 x ) ′ = ( − 1 2 cos ⁡ 2 x + 1 ) ′ = sin ⁡ 2 x . \left(-\frac{1}{2} \cos 2 x\right)^{\prime}=\left(-\frac{1}{2} \cos 2 x+1\right)^{\prime}=\sin 2 x . (21cos2x)=(21cos2x+1)=sin2x.
如果这些简单的例子都可从基本求导公式反推而得的话,那么
F ( x ) = x arctan ⁡ x − 1 2 ln ⁡ ( 1 + x 2 ) F(x)=x \arctan x-\frac{1}{2} \ln \left(1+x^{2}\right) F(x)=xarctanx21ln(1+x2)
f ( x ) = arctan ⁡ x f(x)=\arctan x f(x)=arctanx 的一个原函数, 就不那样明显了. 事实上,
研究原函数必须解决下面两个重要问题:
1. 满足何种条件的函数必定存在原函数? 如果存在,是否唯一?
2. 若已知某个函数的原函数存在, 又怎样把它求出来?
关于第一个问题,我们用下面两个定理来回答; 至于第二个问题,
其解答则是本章接着要介绍的各种积分方法.
定理 8.1 若函数 f f f 在区间 I I I 上连续, 则 f f f I I I 上存在原函数 F F F,
F ′ ( x ) = F^{\prime}(x)= F(x)=
f ( x ) , x ∈ I f(x), x \in I f(x),xI.
本定理要到第九章 85 中才能获得证明.
由于初等函数在其定义区间上为连续函数,
因此每个初等函数在其定义区间上都有原函数
(只是初等函数的原函数不一定仍是初等函数). 当然,
一个函数如果存在间断点,那么此函数在其间断点所在的区间上就不一定存在原函数(参见本节习题第
4 题和第 8 题).
定理 8.2 设 F F F f f f 在区间 I I I 上的一个原函数, 则
(i) F + C F+C F+C 也是 f f f I I I 上的原函数, 其中 C C C 为任意常量函数 (1);
(ii) f f f I I I 上的任意两个原函数之间, 只可能相差一个常数.
证 (i) 这是因为 [ F ( x ) + C ] ′ = F ′ ( x ) = f ( x ) , x ∈ I [F(x)+C]^{\prime}=F^{\prime}(x)=f(x), x \in I [F(x)+C]=F(x)=f(x),xI.
(ii) 设 F F F G G G f f f I I I 上的任意两个原函数, 则有
[ F ( x ) − G ( x ) ] ′ = F ′ ( x ) − G ′ ( x ) = f ( x ) − f ( x ) = 0 , x ∈ I . \begin{aligned} {[F(x)-G(x)]^{\prime} } & =F^{\prime}(x)-G^{\prime}(x) \\ & =f(x)-f(x)=0, \quad x \in I . \end{aligned} [F(x)G(x)]=F(x)G(x)=f(x)f(x)=0,xI.
根据第六章拉格朗日中值定理的推论, 知道
F ( x ) − G ( x ) ≡ C , x ∈ I . F(x)-G(x) \equiv C, \quad x \in I . F(x)G(x)C,xI.
定义 2 函数 f f f 在区间 I I I 上的全体原函数称为 f f f I I I 上的不定积分,
记作
∫ f ( x ) d x , \int f(x) \mathrm{d} x, f(x)dx,
其中称 ∫ \int 为积分号, f ( x ) f(x) f(x) 为被积函数, f ( x ) d x f(x) \mathrm{d} x f(x)dx
为被积表达式 ( 2 ) , x { }^{(2)}, x (2),x 为积分变量. 尽管记号 (1)
中各个部分都有其特定的名称,但在使用时必须把它们看作一个整体.
由定义 2 可见, 不定积分与原函数是总体与个体的关系, 即若 F F F f f f
的一个原函数, 则 f f f 的不定积分是一个函数族 { F + C } \{F+C\} { F+C}, 其中 C C C
是任意常数. 为方便起见, 写作
∫ f ( x ) d x = F ( x ) + C . \int f(x) \mathrm{d} x=F(x)+C . f(x)dx=F(x)+C.
这时又称 C C C 为积分常数, 它可取任一实数值.于是又有
[ ∫ f ( x ) d x ] ′ = [ F ( x ) + C ] ′ = f ( x ) , d ∫ f ( x ) d x = d [ F ( x ) + C ] = f ( x ) d x . \begin{array}{l} {\left[\int f(x) \mathrm{d} x\right]^{\prime}=[F(x)+C]^{\prime}=f(x),} \\ \mathrm{d} \int f(x) \mathrm{d} x=\mathrm{d}[F(x)+C]=f(x) \mathrm{d} x . \end{array} [f(x)dx]=[F(x)+C]=f(x),df(x)dx=d[F(x)+C]=f(x)dx.

按照写法 (2), 本节开头所举的几个例子可写作
∫ x 2   d x = 1 3 x 3 + C , ∫ sin ⁡ 2 x   d x = − 1 2 cos ⁡ 2 x + C , ∫ arctan ⁡ x   d x = x arctan ⁡ x − 1 2 ln ⁡ ( 1 + x 2 ) + C . \begin{array}{l} \int x^{2} \mathrm{~d} x=\frac{1}{3} x^{3}+C, \\ \int \sin 2 x \mathrm{~d} x=-\frac{1}{2} \cos 2 x+C, \\ \int \arctan x \mathrm{~d} x=x \arctan x-\frac{1}{2} \ln \left(1+x^{2}\right)+C . \end{array} x2 dx=31x3+C,sin2x dx=21cos2x+C,arctanx dx=xarctanx21ln(1+x2)+C.

(1) 这里既把 C C C 看作常量函数, 又把它作为该常量函数的函数值,
在不致混淆时, 以后常说" C C C 为任意常数".
(2) 不久可看到, 被积表达式可认同为 f f f 的原函数 F F F 的微分, 即
d F = F ′

  • 25
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值