数学分析(十三)-函数列与函数项级数1-一致收敛性2-函数项级数3-一致收敛判别法1:魏尔斯特拉斯【ΣMₙ为收敛的正项级数,若∀x∈D都有|uₙ(x)|≤Mₙ,则Σuₙ(x)在D上一致收敛】

本文介绍了函数项级数的一致收敛性的判别法,特别是魏尔斯特拉斯判别法。通过定理13.5阐述了当函数项级数满足一定条件时,如何判断其在指定数集上一致收敛。并给出了应用实例及优级数的概念。
摘要由CSDN通过智能技术生成

三、函数项级数的一致收敛性判别法

判别函数项级数的一致收敛性除了根据定义或定理 13.4 外,有些级数还可根据级数各项的特性来判别.

定理 13.5 魏尔斯特拉斯判别法

设函数项级数 ∑ u n ( x ) \sum u_{n}(x) un(x) 定义在数集 D D D 上, ∑ M n \sum M_{n} Mn为收敛的正项级数, 若对一切 x ∈ D x \in D xD, 有

∣ u n ( x ) ∣ ⩽ M n , n = 1 , 2 , ⋯   , ( 12 ) \left|u_{n}(x)\right| \leqslant M_{n}, \quad n=1,2, \cdots, \quad\quad(12) un(x)Mn,n=1,2,,(12)

则函数项级数 ∑ u n ( x ) \sum u_{n}(x) un(x) D D D 上一致收敛.


由假设正项级数 ∑ M n \sum M_{n} Mn 收敛, 根据数项级数的柯西准则, 任给正数 ε \varepsilon ε, 存在某正整数 N N N,使得当 n > N n>N n>N 及任何正整数 p p p,有
∣ M n + 1 + ⋯ + M n + p ∣ = M n + 1 + ⋯ + M n + p < ε . \left|M_{n+1}+\cdots+M_{n+p}\right|=M_{n+1}+\cdots+M_{n+p}<\varepsilon .

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值