数学分析(十三)-函数列与函数项级数1-一致收敛性2-函数项级数3-一致收敛判别法1:魏尔斯特拉斯【ΣMₙ为收敛的正项级数,若∀x∈D都有|uₙ(x)|≤Mₙ,则Σuₙ(x)在D上一致收敛】

本文介绍了函数项级数的一致收敛性的判别法,特别是魏尔斯特拉斯判别法。通过定理13.5阐述了当函数项级数满足一定条件时,如何判断其在指定数集上一致收敛。并给出了应用实例及优级数的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

三、函数项级数的一致收敛性判别法

判别函数项级数的一致收敛性除了根据定义或定理 13.4 外,有些级数还可根据级数各项的特性来判别.

定理 13.5 魏尔斯特拉斯判别法

设函数项级数 ∑ u n ( x ) \sum u_{n}(x) un(x) 定义在数集 D D D 上, ∑ M n \sum M_{n} Mn为收敛的正项级数, 若对一切 x ∈ D x \in D xD, 有

∣ u n ( x ) ∣ ⩽ M n , n = 1 , 2 , ⋯   , ( 12 ) \left|u_{n}(x)\right| \leqslant M_{n}, \quad n=1,2, \cdots, \quad\quad(12) un(x)Mn,n=1,2,,(12)

则函数项级数 ∑ u n ( x ) \sum u_{n}(x) un(x) D D D 上一致收敛.


由假设正项级数 ∑ M n \sum M_{n} Mn 收敛, 根据数项级数的柯西准则, 任给正数 ε \varepsilon ε, 存在某正整数 N N N,使得当 n > N n>N n>N 及任何正整数 p p p,有
∣ M n + 1 + ⋯ + M n + p ∣ = M n + 1 + ⋯ + M n + p < ε . \left|M_{n+1}+\cdots+M_{n+p}\right|=M_{n+1}+\cdots+M_{n+p}<\varepsilon .

内容概要:本文详细介绍了QY20B型汽车起重机液压系统的设计过程,涵盖其背景、发展史、主要运动机构及其液压回路设计。文章首先概述了汽车起重机的分类和发展历程,强调了液压技术在现代起重机中的重要性。接着,文章深入分析了QY20B型汽车起重机的五大主要运动机构(支腿、回转、伸缩、变幅、起升)的工作原理及相应的液压回路设计。每个回路的设计均考虑了性能要求、功能实现及工作原理,确保系统稳定可靠。此外,文章还详细计算了支腿油缸的受力、液压元件的选择及液压系统的性能验算,确保设计的可行性和安全性。 适合人群:从事工程机械设计、液压系统设计及相关领域的工程师和技术人员,以及对起重机技术感兴趣的高等院校学生和研究人员。 使用场景及目标:①为从事汽车起重机液压系统设计的工程师提供详细的参考案例;②帮助技术人员理解和掌握液压系统设计的关键技术和计算方法;③为高等院校学生提供学习和研究起重机液压系统设计的实用资料。 其他说明:本文不仅提供了详细的液压系统设计过程,还结合了实际工程应用,确保设计的实用性和可靠性。文中引用了大量参考文献,确保设计依据的科学性和权威性。阅读本文有助于读者深入了解汽车起重机液压系统的设计原理和实现方法,为实际工程应用提供有力支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值