三、函数项级数的一致收敛性判别法
判别函数项级数的一致收敛性除了根据定义或定理 13.4 外,有些级数还可根据级数各项的特性来判别.
定理 13.5 魏尔斯特拉斯判别法
设函数项级数 ∑ u n ( x ) \sum u_{n}(x) ∑un(x) 定义在数集 D D D 上, ∑ M n \sum M_{n} ∑Mn为收敛的正项级数, 若对一切 x ∈ D x \in D x∈D, 有
∣ u n ( x ) ∣ ⩽ M n , n = 1 , 2 , ⋯ , ( 12 ) \left|u_{n}(x)\right| \leqslant M_{n}, \quad n=1,2, \cdots, \quad\quad(12) ∣un(x)∣⩽Mn,n=1,2,⋯,(12)
则函数项级数 ∑ u n ( x ) \sum u_{n}(x) ∑un(x) 在 D D D 上一致收敛.
证
由假设正项级数 ∑ M n \sum M_{n} ∑Mn 收敛, 根据数项级数的柯西准则, 任给正数 ε \varepsilon ε, 存在某正整数 N N N,使得当 n > N n>N n>N 及任何正整数 p p p,有
∣ M n + 1 + ⋯ + M n + p ∣ = M n + 1 + ⋯ + M n + p < ε . \left|M_{n+1}+\cdots+M_{n+p}\right|=M_{n+1}+\cdots+M_{n+p}<\varepsilon .