二重积分具有一系列与定积分完全相类似的性质, 现列举如下.
- 若 f ( x , y ) f(x, y) f(x,y) 在区域 D D D 上可积, k k k 为常数, 则 k f ( x , y ) k f(x, y) kf(x,y) 在 D D D上也可积, 且
∬ D k f ( x , y ) d σ = k ∬ D f ( x , y ) d σ . \iint_{D} k f(x, y) \mathrm{d} \sigma=k \iint_{D} f(x, y) \mathrm{d} \sigma . ∬Dkf(x,y)dσ=k∬Df(x,y)dσ. - 若 f ( x , y ) , g ( x , y ) f(x, y), g(x, y) f(x,y),g(x,y) 在 D D D 上都可积, 则 f ( x , y ) ± g ( x , y ) f(x, y) \pm g(x, y) f(x,y)±g(x,y) 在 D D D 上也可积, 且
∬ D [ f ( x , y ) ± g ( x , y ) ] d σ = ∬ D f ( x , y ) d σ ± ∬ D g ( x , y ) d σ . \iint_{D}[f(x, y) \pm g(x, y)] \mathrm{d} \sigma=\iint_{D} f(x, y) \mathrm{d} \sigma \pm \iint_{D} g(x, y) \mathrm{d} \sigma . ∬D[f(x,y)±g(x,y)]dσ