数学分析(二十一)-重积分1-二重积分的概念3:二重积分的性质【二重积分具有一系列与定积分完全相类似的性质】【中值定理:以D为底,z=f(x,y)为曲顶的曲顶柱体体积等于一个同底的平顶柱体的体积】

该篇博客详细介绍了二重积分的一系列性质,包括常数倍性、加减性、区域并集的积分、比较定理以及绝对值积分。特别强调了积分的中值定理,即在有界闭区域上的连续函数的二重积分等于该区域底面积乘以函数在区域内某点的值,这一定理在几何上解释了曲顶柱体与平顶柱体体积的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二重积分具有一系列与定积分完全相类似的性质, 现列举如下.

  1. f ( x , y ) f(x, y) f(x,y) 在区域 D D D 上可积, k k k 为常数, 则 k f ( x , y ) k f(x, y) kf(x,y) D D D上也可积, 且
    ∬ D k f ( x , y ) d σ = k ∬ D f ( x , y ) d σ . \iint_{D} k f(x, y) \mathrm{d} \sigma=k \iint_{D} f(x, y) \mathrm{d} \sigma . Dkf(x,y)dσ=kDf(x,y)dσ.
  2. f ( x , y ) , g ( x , y ) f(x, y), g(x, y) f(x,y),g(x,y) D D D 上都可积, 则 f ( x , y ) ± g ( x , y ) f(x, y) \pm g(x, y) f(x,y)±g(x,y) D D D 上也可积, 且
    ∬ D [ f ( x , y ) ± g ( x , y ) ] d σ = ∬ D f ( x , y ) d σ ± ∬ D g ( x , y ) d σ . \iint_{D}[f(x, y) \pm g(x, y)] \mathrm{d} \sigma=\iint_{D} f(x, y) \mathrm{d} \sigma \pm \iint_{D} g(x, y) \mathrm{d} \sigma . D[f(x,y)±g(x,y)]dσ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值