三、转动惯量
质点 A A A 对于轴 l l l 的转动惯量 J J J 是质点 A A A 的质量 m m m 和 A A A 与转动轴
l l l 的距离 r r r 的平方的乘积, 即 J = m r 2 J=m r^{2} J=mr2.
现在讨论空间物体 V V V 的转动惯量问题. 我们仍然采用第二段中的办法, 把 V V V
看作由 n n n 个质点组成的质点系, 然后用取极限的方法求得 V V V 的转动惯量.
设 ρ ( x , y , z ) \rho(x, y, z) ρ(x,y,z) 为空间物体 V V V 的密度分布函数, 它在 V V V 上连续. 对
V V V 作分割 T T T, 在属于 T T T 的每一小块 v i v_{i} vi 上任取一点
( ξ i , η i , ζ i ) \left(\xi_{i}, \eta_{i}, \zeta_{i}\right) (ξi,ηi,ζi), 于是 v i v_{i} vi 的质量可以
ρ ( ξ i , η i , ζ i ) Δ v i \rho\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta v_{i} ρ(ξi,ηi,ζi)Δvi
近似替代.当以质点系
{ ( ξ i , η i , ζ i ) , i = 1 , 2 , ⋯ , n } \left\{\left(\xi_{i}, \eta_{i}, \zeta_{i}\right), i=1,2, \cdots, n\right\} {
(ξi,ηi,ζi),i=1,2,⋯,n}
近似替代 V V V 时, 质点系对于 x x x 轴的转动惯量则是
J x n = ∑ i = 1 n ( η i 2 + ζ i 2 ) ρ ( ξ i , η i , ζ i ) Δ v i . J_{x_{n}}=\sum_{i=1}^{n}\left(\eta_{i}^{2}+\zeta_{i}^{2}\right) \rho\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta v_{i} . Jxn=i=1∑n(ηi2+ζi2)ρ(ξi,ηi,ζi)Δvi.
当 ∥ T ∥ → 0 \|T\| \rightarrow 0 ∥T∥→0 时,上述积分和的极限就是物体 V V V 对于 x x x
轴的转动惯量
J x = ∭ V ( y 2 + z 2 ) ρ ( x , y , z ) d V . J_{x}=\iiint_{V}\left(y^{2}+z^{2}\right) \rho(x, y, z) \mathrm{d} V . Jx=∭V(y2+z2)ρ(x,y,z)dV.
类似可得物体 V V V 对于 y y y 轴与 z z z 轴的转动惯量分别为
J y = ∭ V ( z 2 + x 2 ) ρ ( x , y , z ) d V , J z = ∭ V ( x 2 + y 2 ) ρ ( x , y , z ) d V . \begin{array}{l} J_{y}=\iiint_{V}\left(z^{2}+x^{2}\right) \rho(x, y, z) \mathrm{d} V, \\ J_{z}=\iiint_{V}\left(x^{2}+y^{2}\right) \rho(x, y, z) \mathrm{d} V . \end{array} Jy=∭V(z2+x2)ρ(x,y,z)dV,Jz=∭V(x2+y2)ρ(x,y,z)dV.
同理,物体 V V V 对于坐标平面的转动惯量分别为
J x y = ∭ V z 2 ρ ( x , y , z ) d V , J y z = ∭ V x 2 ρ ( x , y , z ) d V , J x = ∭ V y 2 ρ ( x , y , z ) d V . \begin{array}{l} J_{x y}=\iiint_{V} z^{2} \rho(x, y, z) \mathrm{d} V, \\ J_{y z}=\iiint_{V} x^{2} \rho(x, y, z) \mathrm{d} V, \\ J_{x}=\iiint_{V} y^{2} \rho(x, y, z) \mathrm{d} V . \end{array} Jxy=∭Vz2ρ(x,y,z)dV,Jyz=∭Vx2ρ(x,y,z)dV,Jx=∭Vy2ρ(x,y,z)dV.
据此, 读者也容易建立平面薄板对于坐标轴的转动惯量:
J x = ∬ D y 2 ρ ( x , y ) d σ , J y = ∬ D x 2 ρ ( x , y ) d σ J_{x}=\iint_{D} y^{2} \rho(x, y) \mathrm{d} \sigma, \quad J_{y}=\iint_{D} x^{2} \rho(x, y) \mathrm{d} \sigma Jx=