数学分析(二十一)-重积分6-重积分的应用4:引力

本文通过微元法探讨了重积分在计算引力中的应用,详细解析了密度为ρ(x,y,z)的立体对质量为1的质点A的引力计算。以球体为例,展示了如何计算球对外点的引力,并提供了其他几何体如曲面、锥面、薄板等在引力、质心和转动惯量计算中的实例。" 112941106,10552237,R语言统计检验:从t检验到非参数检验,"['R语言', '统计学', '假设检验', '数据分析']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

四、引力
求密度为 ρ ( x , y , z ) \rho(x, y, z) ρ(x,y,z) 的立体对立体外质量为 1 的质点 A A A 的引力.
A A A 的坐标为 ( ξ , η , ζ ) , V (\xi, \eta, \zeta), V (ξ,η,ζ),V 中点的坐标用 ( x , y , z ) (x, y, z) (x,y,z) 表示.
我们使用微元法来求 V V V A A A的引力. V V V 中质量微元
d m = ρ d V \mathrm{d} m=\rho \mathrm{d} V dm=ρdV A A A 的引力在坐标轴上的投影为
d F x = k x − ξ r 3 ρ d V ,   d F y = k y − η r 3 ρ d V ,   d F z = k z − ζ r 3 ρ d V , \mathrm{d} F_{x}=k \frac{x-\xi}{r^{3}} \rho \mathrm{d} V, \mathrm{~d} F_{y}=k \frac{y-\eta}{r^{3}} \rho \mathrm{d} V, \mathrm{~d} F_{z}=k \frac{z-\zeta}{r^{3}} \rho \mathrm{d} V, dFx=kr3xξρdV, dFy=kr3yηρdV, dFz=kr3zζρdV,
其中 k k k 为引力系数,
r = ( x − ξ ) 2 + ( y − η ) 2 + ( z − ζ ) 2 r=\sqrt{(x-\xi)^{2}+(y-\eta)^{2}+(z-\zeta)^{2}} r=(xξ)2+(yη)2+(zζ)2
A A A d V \mathrm{d} V dV 的距离, 于是力 F \boldsymbol{F} F
在三个坐标轴上的投影分别为
F x = k ∭ V x − ξ r 3 ρ d V , F y = k ∭ V y − η r 3 ρ d V , F z = k ∭ V z − ζ r 3 ρ d V , F_{x}=k \iiint_{V} \frac{x-\xi}{r^{3}} \rho \mathrm{d} V, \quad F_{y}=k \iiint_{V} \frac{y-\eta}{r^{3}} \rho \mathrm{d} V, \quad F_{z}=k \iiint_{V} \frac{z-\zeta}{r^{3}} \rho \mathrm{d} V, Fx=kVr3xξρdV,Fy=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值