四、引力
求密度为 ρ ( x , y , z ) \rho(x, y, z) ρ(x,y,z) 的立体对立体外质量为 1 的质点 A A A 的引力.
设 A A A 的坐标为 ( ξ , η , ζ ) , V (\xi, \eta, \zeta), V (ξ,η,ζ),V 中点的坐标用 ( x , y , z ) (x, y, z) (x,y,z) 表示.
我们使用微元法来求 V V V 对 A A A的引力. V V V 中质量微元
d m = ρ d V \mathrm{d} m=\rho \mathrm{d} V dm=ρdV 对 A A A 的引力在坐标轴上的投影为
d F x = k x − ξ r 3 ρ d V , d F y = k y − η r 3 ρ d V , d F z = k z − ζ r 3 ρ d V , \mathrm{d} F_{x}=k \frac{x-\xi}{r^{3}} \rho \mathrm{d} V, \mathrm{~d} F_{y}=k \frac{y-\eta}{r^{3}} \rho \mathrm{d} V, \mathrm{~d} F_{z}=k \frac{z-\zeta}{r^{3}} \rho \mathrm{d} V, dFx=kr3x−ξρdV, dFy=kr3y−ηρdV, dFz=kr3z−ζρdV,
其中 k k k 为引力系数,
r = ( x − ξ ) 2 + ( y − η ) 2 + ( z − ζ ) 2 r=\sqrt{(x-\xi)^{2}+(y-\eta)^{2}+(z-\zeta)^{2}} r=(x−ξ)2+(y−η)2+(z−ζ)2
是 A A A 到 d V \mathrm{d} V dV 的距离, 于是力 F \boldsymbol{F} F
在三个坐标轴上的投影分别为
F x = k ∭ V x − ξ r 3 ρ d V , F y = k ∭ V y − η r 3 ρ d V , F z = k ∭ V z − ζ r 3 ρ d V , F_{x}=k \iiint_{V} \frac{x-\xi}{r^{3}} \rho \mathrm{d} V, \quad F_{y}=k \iiint_{V} \frac{y-\eta}{r^{3}} \rho \mathrm{d} V, \quad F_{z}=k \iiint_{V} \frac{z-\zeta}{r^{3}} \rho \mathrm{d} V, Fx=k∭Vr3x−ξρdV,Fy=