定义 1 【数列极限的 ε − N \varepsilon-N ε−N 定义】
设 { a n } \left\{a_{n}\right\} {an} 为数列, a a a 为定数. 若对任给的正数 ε \varepsilon ε, 总存在正整数 N N N, 使得当 n > N n>N n>N 时, 有
∣ a n − a ∣ < ε , \left|a_{n}-a\right|<\varepsilon, ∣an−a∣<ε,
则称数列 { a n } \left\{a_{n}\right\} {an} 收敛于 a a a, 定数 a a a 称为数列 { a n } \left\{a_{n}\right\} {an} 的极限, 并记作
lim n → ∞ a n = a ( 1 ) , 或 a n → a ( n → ∞ ) , \lim \limits_{n \rightarrow \infty} a_{n}=a^{(1)} \text {, 或 } a_{n} \rightarrow a(n \rightarrow \infty) , n→∞liman=a(1), 或 an→a(n→∞),
读作"当 n n n 趋于无穷大时, { a n } \left\{a_{n}\right\} {an} 的极限等于 a a a 或 a n a_{n} an 趋于 a a a ".
若数列 { a n } \left\{a_{n}\right\} {an} 没有极限,则称 { a n } \left\{a_{n}\right\} {an} 不收敛,或称 { a n } \left\{a_{n}\right\} {an} 为发散数列.
定义 1 常称为数列极限的 ε − N \varepsilon-N ε−N 定义.下面举例说明如何根据 ε − N \varepsilon-N ε−N 定义来验证数列极限.
例 2 证明
lim
n
→
∞
1
n
α
=
0
\lim \limits_{n \rightarrow \infty} \cfrac{1}{n^{\alpha}}=0
n→∞limnα1=0, 这里
α
\alpha
α 为正数.
证 由于
∣ 1 n α − 0 ∣ = 1 n α \left|\cfrac{1}{n^{\alpha}}-0\right|=\cfrac{1}{n^{\alpha}} nα1−0 =nα1
故对任给的
ε
>
0
\varepsilon>0
ε>0, 只要取
N
=
[
1
ε
1
a
]
+
1
\color{red}{N=\left[\cfrac{1}{\varepsilon^{\frac{1}{a}}}\right]+1}
N=[εa11]+1, 则当
n
>
N
n>N
n>N 时, 便有
1
n
α
<
1
N
α
<
ε
,
即
∣
1
n
α
−
0
∣
<
ε
.
\cfrac{1}{n^{\alpha}}<\cfrac{1}{N^{\alpha}}<\varepsilon, \quad \text { 即 }\left|\cfrac{1}{n^{\alpha}}-0\right|<\varepsilon .
nα1<Nα1<ε, 即
nα1−0
<ε.
这就证明了
lim
n
→
∞
1
n
α
=
0
\lim \limits_{n \rightarrow \infty} \cfrac{1}{n^{\alpha}}=0
n→∞limnα1=0.
例 3 证明
lim n → ∞ 3 n 2 n 2 − 3 = 3 \lim \limits_{n \rightarrow \infty} \cfrac{3 n^{2}}{n^{2}-3}=3 n→∞limn2−33n2=3
分析 由于
∣ 3 n 2 n 2 − 3 − 3 ∣ = 9 n 2 − 3 ⩽ 9 n ( n ⩾ 3 ) . ( 1 ) \left|\cfrac{3 n^{2}}{n^{2}-3}-3\right|=\cfrac{9}{n^{2}-3} \leqslant \cfrac{9}{n} \quad(n \geqslant 3) . \quad\quad(1) n2−33n2−3 =n2−39⩽n9(n⩾3).(1)
因此, 对任给的 ε > 0 \varepsilon>0 ε>0, 只要 9 n < ε \cfrac{9}{n}<\varepsilon n9<ε, 便有
∣ 3 n 2 n 2 − 3 − 3 ∣ < ε ( 2 ) \left|\cfrac{3 n^{2}}{n^{2}-3}-3\right|<\varepsilon \quad\quad(2) n2−33n2−3 <ε(2)
即当 n > 9 ε n>\cfrac{9}{\varepsilon} n>ε9 时, (2) 式成立. 又由于 (1) 式是在 n ⩾ 3 n \geqslant 3 n⩾3 的条件下成立的,故应取
N = max { 3 , 9 ε } . ( 3 ) \color{red}{N=\max \left\{3, \cfrac{9}{\varepsilon}\right\} .\quad\quad(3)} N=max{3,ε9}.(3)
证 任给 ε > 0 \varepsilon>0 ε>0, 取 N = max { 3 , 9 ε } N=\max \left\{3, \cfrac{9}{\varepsilon}\right\} N=max{3,ε9}. 据分析, 当 n > N n>N n>N 时 (2) 式成立.于是本题得证.
注 本例在求 N N N 的过程中, (1) 式中运用了适当放大的方法, 这样求 N N N 就比较方便. 但应注意这种放大必须 “适当”, 以根据给定的 ε \varepsilon ε 能确定出 N N N. 又 (3) 式给出的 N N N 不一定是正整数.一般地, 在定义 1 中 N N N 不一定限于正整数, 而只要它是正数即可.
例 4 证明 lim n → ∞ q n = 0 \lim \limits_{n \rightarrow \infty} q^{n}=0 n→∞limqn=0, 这里 ∣ q ∣ < 1 |q|<1 ∣q∣<1.
证 若 q = 0 q=0 q=0, 则结果是显然的. 现设 0 < ∣ q ∣ < 1 0<|q|<1 0<∣q∣<1. 记 h = 1 ∣ q ∣ − 1 h=\cfrac{1}{|q|}-1 h=∣q∣1−1, 则 h > 0 h>0 h>0. 我们有
∣ q n − 0 ∣ = ∣ q ∣ n = 1 ( 1 + h ) n , \left|q^{n}-0\right|=|q|^{n}=\cfrac{1}{(1+h)^{n}}, ∣qn−0∣=∣q∣n=(1+h)n1,
并由 ( 1 + h ) n ⩾ 1 + n h (1+h)^{n} \geqslant 1+n h (1+h)n⩾1+nh 得到
∣ q n − 0 ∣ = ∣ q ∣ n = 1 ( 1 + h ) n ⩽ 1 1 + n h < 1 n h ( 4 ) \left|q^{n}-0\right|=|q|^{n}=\cfrac{1}{(1+h)^{n}} \leqslant \cfrac{1}{1+n h}<\cfrac{1}{n h} \quad\quad(4) ∣qn−0∣=∣q∣n=(1+h)n1⩽1+nh1<nh1(4)
对任给的 ε > 0 \varepsilon>0 ε>0, 只要取 N = 1 ε h \color{red}{N=\cfrac{1}{\varepsilon h}} N=εh1, 则当 n > N n>N n>N 时, 由 (4) 式得
∣ q n − 0 ∣ = ∣ q ∣ n = 1 ( 1 + h ) n ⩽ 1 1 + n h < 1 n h < 1 N h = 1 1 ε h ⋅ h = ε \left|q^{n}-0\right|=|q|^{n}=\cfrac{1}{(1+h)^{n}} \leqslant \cfrac{1}{1+n h}<\cfrac{1}{n h} < \cfrac{1}{N h} = \cfrac{1}{\cfrac{1}{\varepsilon h}·h}=\varepsilon ∣qn−0∣=∣q∣n=(1+h)n1⩽1+nh1<nh1<Nh1=εh1⋅h1=ε
∣ q n − 0 ∣ < ε \left|q^{n}-0\right|<\varepsilon ∣qn−0∣<ε. 这就证明了 lim n → ∞ q n = 0 \lim \limits_{n \rightarrow \infty} q^{n}=0 n→∞limqn=0.
当 q = 1 2 q=\cfrac{1}{2} q=21 时,就是前面例 1 的结果.
注 本例还可利用对数函数 y = lg x y=\lg x y=lgx 的严格增性来证明 (见第一章 § 4 § 4 §4 例 6 的注及 (2) 式), 简述如下:
对任给的 ε > 0 \varepsilon>0 ε>0 (不妨设 ε < 1 \varepsilon<1 ε<1 ), 为使 ∣ q n − 0 ∣ = ∣ q ∣ n < ε \left|q^{n}-0\right|=|q|^{n}<\varepsilon ∣qn−0∣=∣q∣n<ε, 只要
n lg ∣ q ∣ < lg ε , 即 n > lg ε lg ∣ q ∣ ( 这里也假定 0 < ∣ q ∣ < 1 ) . n \lg |q|<\lg \varepsilon, \quad 即 n>\cfrac{\lg \varepsilon}{\lg |q|} \quad(这里也假定 0<|q|<1 ). nlg∣q∣<lgε,即n>lg∣q∣lgε(这里也假定0<∣q∣<1).
于是,只要取 N = lg ε lg ∣ q ∣ \color{red}{N=\cfrac{\lg \varepsilon}{\lg |q|}} N=lg∣q∣lgε 即可.
例 5 证明 lim n → ∞ a n = 1 \lim \limits_{n \rightarrow \infty} \sqrt[n]{a}=1 n→∞limna=1, 其中 a > 0 a>0 a>0.
证 当 a = 1 a=1 a=1 时,结论显然成立. 现设 a > 1 a>1 a>1. 记 α n = a 1 n − 1 \alpha_{n}=a^{\frac{1}{n}}-1 αn=an1−1, 则 α n > 0 \alpha_{n}>0 αn>0. 由
a = ( 1 + α n ) n ⩾ 1 + n α n = 1 + n ( a 1 n − 1 ) , a=\left(1+\alpha_{n}\right)^{n} \geqslant 1+n \alpha_{n}=1+n\left(a^{\frac{1}{n}}-1\right), a=(1+αn)n⩾1+nαn=1+n(an1−1),
得
a 1 n − 1 ⩽ a − 1 n . ( 5 ) a^{\frac{1}{n}}-1 \leqslant \cfrac{a-1}{n} . \quad\quad(5) an1−1⩽na−1.(5)
任给 ε > 0 \varepsilon>0 ε>0, 由 (5) 式可见, 当 n > a − 1 ε = N n>\cfrac{a-1}{\varepsilon}=N n>εa−1=N 时, 就有 a 1 n − 1 < ε a^{\frac{1}{n}}-1<\varepsilon an1−1<ε, 即 ∣ a 1 n − 1 ∣ < ε |a^{\frac{1}{n}}-1|<\varepsilon ∣an1−1∣<ε. 所以 lim n → ∞ a n = 1 \lim \limits_{n \rightarrow \infty} \sqrt[n]{a}=1 n→∞limna=1. 对于 0 < a < 1 0<a<1 0<a<1 的情形, 其证明留给读者.
例 6 证明 lim n → ∞ a n n ! = 0 \lim \limits_{n \rightarrow \infty} \cfrac{a^{n}}{n !}=0 n→∞limn!an=0.
证 若 a = 0 a=0 a=0, 结论是显然的, 现设 a ≠ 0 , k = [ ∣ a ∣ ] + 1 a \neq 0, k=[|a|]+1 a=0,k=[∣a∣]+1, 有
∣ a n n ! − 0 ∣ = ∣ a ∣ n n ! = ∣ a ∣ ⋅ ∣ a ∣ ⋯ ⋯ ⋅ ∣ a ∣ ⋅ ⋯ ⋅ ∣ a ∣ 1 ⋅ 2 ⋅ ⋯ ⋅ k ⋅ ⋯ ⋅ n ⩽ K ∣ a ∣ n , \left|\cfrac{a^{n}}{n !}-0\right|=\cfrac{|a|^{n}}{n !}=\cfrac{|a| \cdot|a| \cdots \cdots \cdot|a| \cdot \cdots \cdot|a|}{1 \cdot 2 \cdot \cdots \cdot k \cdot \cdots \cdot n} \leqslant K \cfrac{|a|}{n}, n!an−0 =n!∣a∣n=1⋅2⋅⋯⋅k⋅⋯⋅n∣a∣⋅∣a∣⋯⋯⋅∣a∣⋅⋯⋅∣a∣⩽Kn∣a∣,
其中 K = ∣ a ∣ ⋅ ∣ a ∣ ⋯ ⋯ ∣ a ∣ 1 ⋅ 2 ⋅ ⋯ ⋅ k K=\cfrac{|a| \cdot|a| \cdots \cdots|a|}{1 \cdot 2 \cdot \cdots \cdot k} K=1⋅2⋅⋯⋅k∣a∣⋅∣a∣⋯⋯∣a∣. 所以对于任给的 ε > 0 \varepsilon>0 ε>0, 取 N = max { k , K ∣ a ∣ ε } \color{red}{N=\max \left\{k, \cfrac{K|a|}{\varepsilon}\right\}} N=max{k,εK∣a∣}, 只要 n > N n>N n>N, 就有
∣ a n n ! − 0 ∣ ⩽ K ∣ a ∣ n < ε , \left|\cfrac{a^{n}}{n !}-0\right| \leqslant K \cfrac{|a|}{n}<\varepsilon, n!an−0 ⩽Kn∣a∣<ε,
这就证明了 lim n → ∞ a n n ! = 0 \lim \limits_{n \rightarrow \infty} \cfrac{a^{n}}{n !}=0 n→∞limn!an=0.
关于数列极限的 ε − N \varepsilon-N ε−N 定义, 通过以上几个例子, 读者已有了初步的认识. 对此还应着重注意下面几点:
-
ε \varepsilon ε 的任意性 定义 1 中正数 ε \varepsilon ε 的作用在于衡量数列通项 a n a_{n} an 与定数 a a a 的接近程度, ε \varepsilon ε 愈小,表示接近得愈好; 而正数 ε \varepsilon ε 可以任意地小,说明 a n a_{n} an 与 a a a 可以接近到任何程度.然而,尽管 ε \varepsilon ε 有其任意性,但一经给出,就暂时被确定下来, 以便依靠它来求出 N N N. 又 ε \varepsilon ε 既是任意小的正数,那么 ε 2 , 3 ε \cfrac{\varepsilon}{2}, 3 \varepsilon 2ε,3ε 或 ε 2 \varepsilon^{2} ε2 等同样也是任意小的正数,因此定义 1 中不等式 ∣ a n − a ∣ < ε \left|a_{n}-a\right|<\varepsilon ∣an−a∣<ε 中的 ε \varepsilon ε 可用 ε 2 , 3 ε \cfrac{\varepsilon}{2}, 3 \varepsilon 2ε,3ε 或 ε 2 \varepsilon^{2} ε2 等来代替. 同时,正由于 ε \varepsilon ε 是任意小正数,我们可限定 ε \varepsilon ε 小于一个确定的正数 (如在例 4 的注给出的证明方法中限定 ε < 1 \varepsilon<1 ε<1 ). 另外, 定义 1 中的 ∣ a n − a ∣ < ε \left|a_{n}-a\right|<\varepsilon ∣an−a∣<ε 也可改写成 ∣ a n − a ∣ ⩽ ε \left|a_{n}-a\right| \leqslant \varepsilon ∣an−a∣⩽ε.
-
N N N 的相应性 一般说, N N N 随 ε \varepsilon ε 的变小而变大, 由此常把 N N N写作 N ( ε ) N(\varepsilon) N(ε), 来强调 N N N是依赖于 ε \varepsilon ε 的,但这并不意味着 N N N 是由 ε \varepsilon ε 所唯一确定的. 因为对给定的 ε \varepsilon ε, 比如当 N = N= N= 100 时,能使得当 n > N n>N n>N 时有 ∣ a n − a ∣ < ε \left|a_{n}-a\right|<\varepsilon ∣an−a∣<ε, 则 N = 101 N=101 N=101或更大时此不等式自然也成立. 这里重要的是 N N N 的存在性,而不在于它的值的大小. 另外, 定义 1 中的 n > N n>N n>N 也可改写成 n ⩾ N n \geqslant N n⩾N.
-
从几何意义上看, “当 n > N n>N n>N 时有 ∣ a n − a ∣ < ε \left|a_{n}-a\right|<\varepsilon ∣an−a∣<ε” 意味着: 所有下标大于 N N N 的项 a n a_{n} an都落在邻域 U ( a ; ε ) U(a ; \varepsilon) U(a;ε)内; 而在 U ( a ; ε ) U(a ; \varepsilon) U(a;ε) 之外, 数列 { a n } \left\{a_{n}\right\} {an}中的项至多只有 N N N 个 (有限个).反之, 任给 ε > 0 \varepsilon>0 ε>0, 若在 U ( a ; ε ) U(a ; \varepsilon) U(a;ε) 之外数列 { a n } \left\{a_{n}\right\} {an} 中的项只有有限个,设这有限个项的最大下标为 N N N, 则当 n > N n>N n>N 时有 a n ∈ U ( a ; ε ) a_{n} \in U(a ; \varepsilon) an∈U(a;ε), 即当 n > N n>N n>N 时有 ∣ a n − a ∣ < ε \left|a_{n}-a\right|<\varepsilon ∣an−a∣<ε.