数学分析(三)-函数极限1-函数极限概念1-2:用“ε-M定义”来“验证”x➝∞时的函数极限【关键步骤:根据ε−M定义找到以ε为自变量的M的取值M(ε),满足当x>M时⇒|f(x)-A|<ε】

本文介绍了如何使用ε-M定义来验证函数在x趋近于无穷大时的极限,通过两个具体的例子——x^1和arctanx,详细阐述了证明过程,强调了ε和M的关系以及如何选择合适的M值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义 1

f f f 为定义在 [ a , + ∞ ) [a,+\infty) [a,+) 上的函数, A A A 为定数. 若对任给的 ε > 0 \varepsilon>0 ε>0, 存在正数 M M M ( ⩾ a ) (\geqslant a) (a), 使得当 x > M x>M x>M 时, 有

∣ f ( x ) − A ∣ < ε , |f(x)-A|<\varepsilon, f(x)A<ε,

则称函数 f f f x x x 趋于 + ∞ +\infty + 时以 A A A 为极限,记作

lim ⁡ x → + ∞ f ( x ) = A  或  f ( x ) → A ( x → + ∞ ) . \lim \limits_{x \rightarrow+\infty} f(x)=A \text { 或 } f(x) \rightarrow A(x \rightarrow+\infty) . x+limf(x)=A  f(x)A(x+).


例 1
证明

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值