定义 1
设 f f f 为定义在 [ a , + ∞ ) [a,+\infty) [a,+∞) 上的函数, A A A 为定数. 若对任给的 ε > 0 \varepsilon>0 ε>0, 存在正数 M M M ( ⩾ a ) (\geqslant a) (⩾a), 使得当 x > M x>M x>M 时, 有
∣ f ( x ) − A ∣ < ε , |f(x)-A|<\varepsilon, ∣f(x)−A∣<ε,
则称函数 f f f 当 x x x 趋于 + ∞ +\infty +∞ 时以 A A A 为极限,记作
lim x → + ∞ f ( x ) = A 或 f ( x ) → A ( x → + ∞ ) . \lim \limits_{x \rightarrow+\infty} f(x)=A \text { 或 } f(x) \rightarrow A(x \rightarrow+\infty) . x→+∞limf(x)=A 或 f(x)→A(x→+∞).
例 1
证明