数学分析(四)-函数的连续性1-连续性概念3-区间上的连续函数3:“分段”连续【若函数f在区间[a,b]上仅有有限个第一类间断点,则称f在区间[a,b]上分段连续】

本文介绍了函数的连续性,特别是在闭区间上的分段连续性。通过黎曼函数的例子,阐述了一个函数如何在有理点和无理点上表现出不同的连续性,证明了黎曼函数在无理点连续但在有理点不连续的性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

若函数 f f f 在区间 I I I 上的每一点都连续, 则称 f f f I I I 上的连续函数.

对于闭区间或半开半闭区间的端点, 函数在这些点上连续是指左连续右连续.

例如, 函数 y = c , y = x , y = sin ⁡ x y=c, y=x, y=\sin x y=c,y=x,y=sinx y = cos ⁡ x y=\cos x y=cosx 都是 R \mathbf{R} R上的连续函数. 又如函数 y = y= y= 1 − x 2 \sqrt{1-x^{2}} 1x2 ( − 1 , 1 ) (-1,1) (1,1)上的每一点都连续, 在 x = 1 x=1 x=1 为左连续, 在 x = − 1 x=-1 x=1 为右连续, 因而它在 [ − 1 , 1 ] [-1,1] [1,1] 上连续.

若函数 f f f 在区间 [ a , b ] [a, b] [a,b] 上仅有有限个第一类间断点,则称 f f f [ a , b ] [a, b] [a,b]上分段连续. 例如,函数 y = [ x ] y=[x] y=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值