若函数 f f f 在点 x 0 x_{0} x0 连续, 则 f f f 在点 x 0 x_{0} x0 有极限,且极限值等于函数值 f ( x 0 ) f\left(x_{0}\right) f(x0). 从而,根据函数极限的性质能推断出函数 f f f 在 U ( x 0 ) U\left(x_{0}\right) U(x
数学分析(四)-函数的连续性2-连续函数的性质1-局部性质2-2:局部保号性【表述②:若f在x₀连续且f(x₀)>0,则存在常数δ>0使得当0<|x−x₀|<δ时,有f(x)>0】
于 2024-04-07 23:21:42 首次发布