数学分析(四)-函数的连续性2-连续函数的性质1-局部性质2-2:局部保号性【表述②:若f在x₀连续且f(x₀)>0,则存在常数δ>0使得当0<|x−x₀|<δ时,有f(x)>0】

定理4.3阐述了函数在某点连续时的局部保号性。若函数f在x0处连续且f(x0)>0,则存在一个邻域U(x0),在此邻域内所有x的函数值f(x)都大于0。这表明连续函数在该点的正向保持不变。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

若函数 f f f 在点 x 0 x_{0} x0 连续, 则 f f f 在点 x 0 x_{0} x0 有极限,且极限值等于函数值 f ( x 0 ) f\left(x_{0}\right) f(x0). 从而,根据函数极限的性质能推断出函数 f f f U ( x 0 ) U\left(x_{0}\right) U(x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值