数学分析(八)-不定积分1-2-基本积分表2:不定积分的线性运算法则【∫[k₁f(x)+k₂g(x)]dx=k₁∫f(x)dx+k₂∫g(x)dx】

本文介绍了不定积分的线性运算法则,定理8.3阐述了如何通过该法则求解复合函数的积分。通过一系列示例,如∫x^2+1/x^4+1 dx, ∫cos^2xsin^2xdx等,展示了如何利用线性法则和基本积分公式求得不定积分,并给出了求解绝对值函数积分的方法。" 112415196,10297226,使用Python与Bash结合:增强Linux命令行功能,"['shell脚本', 'Python编程', 'Linux工具', '命令行增强', '数据分析']
摘要由CSDN通过智能技术生成

基本积分公式, 读者必须牢牢记住, 因为其他函数的不定积分经运算变形后,最后归为这些基本不定积分. 当然, 仅有这些基本公式是不够用的, 即使像 ln ⁡ x , tan ⁡ x \ln x, \tan x lnx,tanx, cot ⁡ x , sec ⁡ x , csc ⁡ x , arcsin ⁡ x , arctan ⁡ x \cot x, \sec x, \csc x, \arcsin x, \arctan x cotx,secx,cscx,arcsinx,arctanx 这样一些基本初等函数, 现在还不知道怎样去求得它们的原函数.

所以我们还需要从一些求导法则去导出相应的不定积分法则, 并逐步扩充不定积分公式.

最简单的是从导数线性运算法则得到不定积分的线性运算法则.


定理 8.3

若函数 f f f g g g 在区间 I I I 上都存在原函数, k 1 , k 2 k_{1}, k_{2} k1,k2为两个任意常数, 则 k 1 f + k_{1} f+ k1f+ k 2 g k_{2} g k2g I I I 上也存在原函数, 且当 k 1 k_{1} k1 k 2 k_{2} k2 不同时为零时, 有

∫ [ k 1 f ( x ) + k 2 g ( x ) ] d x = k 1 ∫ f ( x ) d x + k 2 ∫ g ( x ) d x . ( 5 ) \int\left[k_{1} f(x)+k_{2} g(x)\right] \mathrm{d} x=k_{1} \int f(x) \mathrm{d} x+k_{2} \int g(x) \mathrm{d} x . \quad\quad(5) [k1f(x)+k2g(x)]dx=k1f(x)dx+k2g(x)dx.(5)


这是因为

[ k 1 ∫ f ( x ) d x + k 2 ∫ g ( x ) d x ] ′ = k 1 ( ∫ f ( x ) d x ) ′ + k 2 ( ∫ g ( x ) d x ) ′ = k 1 f ( x ) + k 2 g ( x ) . \begin{aligned} {\left[k_{1} \int f(x) \mathrm{d} x+k_{2} \int g(x) \mathrm{d} x\right]^{\prime} } & =k_{1}\left(\int f(x) \mathrm{d} x\right)^{\prime}+k_{2}\left(\int g(x) \mathrm{d} x\right)^{\prime} =k_{1} f(x)+k_{2} g(x) . \end{aligned} [k1f(x)dx+k2g(x)dx]=k1(f(x)dx)+k2(g(x)dx)=k1f(x)+k2g(x).<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值