数学分析(八)-不定积分2-1-换元积分法3:第一类、第二类换元积分法区别与联系【本质都是复合函数求导法推导出的】【第二换元积分法从形式上看是第一换元积分法的逆行,目的都是为了化为容易求原函数的形式】

突破对两类换元积分法的理解,我们可以通过对它们的比较来实现,如在运用中的对比。先从它们在运用中的的一般步骤入手:

(1)第一换元积分需要凑微分:

将不定积分化为∫g(φ(x))φ’(x)dx=∫g(φ(x))dφ(x)的形式;

而第二换元积分法没有这个要求。

(2)第一换元积分法第一换元积分法换元的形式是,记u=φ(x),然后直接得到换元后的不定积分∫g(u)du.

而第二换元积分换元的形式是,记x=φ^(-1)(u),有时候我们还要确定u的定义域,并且化得u=φ(x)。这里有一个关键的问题,两种换元法引入的函数,形式上是互为反函数,然而它们真的是互为反函数吗?一会儿例题会给我们答案。

(3)第二换元积分法需要把x=φ^(-1)(u)代入原被积函数,并且求dx=du/(φ′(x)),才能转化得到换元后的不定积分∫g(u)du.

而且在求这个不定积分之后,还要把x关于u=φ(x)代入,才能得到最后的结果:

∫g(u)du=∫f(φ(-1)(u))(φ(-1)(u))’du=F(φ^(-1)(u))+C=F(x)+C.

(4)第一换元积分法在最后代入u=φ(x)的函数,直接得到结果:

∫g(u)du=G(u)+C=G(φ(x))+C.




通过运用中的对比,突破对两类换元积分法的理解
第一类换元积分法和第二类换元积分法本质上都是复合函数求积分吗?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值