突破对两类换元积分法的理解,我们可以通过对它们的比较来实现,如在运用中的对比。先从它们在运用中的的一般步骤入手:
(1)第一换元积分需要凑微分:
将不定积分化为∫g(φ(x))φ’(x)dx=∫g(φ(x))dφ(x)的形式;
而第二换元积分法没有这个要求。
(2)第一换元积分法第一换元积分法换元的形式是,记u=φ(x),然后直接得到换元后的不定积分∫g(u)du.
而第二换元积分换元的形式是,记x=φ^(-1)(u),有时候我们还要确定u的定义域,并且化得u=φ(x)。这里有一个关键的问题,两种换元法引入的函数,形式上是互为反函数,然而它们真的是互为反函数吗?一会儿例题会给我们答案。
(3)第二换元积分法需要把x=φ^(-1)(u)代入原被积函数,并且求dx=du/(φ′(x)),才能转化得到换元后的不定积分∫g(u)du.
而且在求这个不定积分之后,还要把x关于u=φ(x)代入,才能得到最后的结果:
∫g(u)du=∫f(φ(-1)(u))(φ(-1)(u))’du=F(φ^(-1)(u))+C=F(x)+C.
(4)第一换元积分法在最后代入u=φ(x)的函数,直接得到结果:
∫g(u)du=G(u)+C=G(φ(x))+C.