数学分析(九)-定积分4-定积分的性质2-1-积分中值定理2:积分第一中值定理的几何意义【f(ξ)=[1/(b-a)]·∫ₐᵇf(x)dx可理解为f(x)在区间[a,b]上所有函数值的平均值】

定积分第一中值定理指出,如果函数f在[a, b]上连续,那么存在至少一点ξ,使得f(ξ)等于该区间上函数值的平均值。这一性质在几何上表现为f(x)曲边梯形面积与相应矩形面积的关系,推广了有限数的算术平均值概念。" 110843328,7833207,Python高效下载文件技巧,"['Python编程', '文件操作', '网络爬虫']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定理 9.7 (积分第一中值定理)

f f f [ a , b ] [a, b] [ab] 上连续, 则至少存在一点 ξ ∈ [ a , b ] \xi \in[a, b] ξ[ab],使得

∫ a b f ( x ) d x = f ( ξ ) ( b − a ) . ( 7 ) \int_{a}^{b} f(x) \mathrm{d} x=f(\xi)(b-a) .\quad\quad(7) a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值