定理 9.13 (定积分分部积分法)
若 u ( x ) , v ( x ) u(x), v(x) u(x),v(x) 为 [ a , b ] [a, b] [a,b] 上的可微函数,且 u ′ ( x ) u^{\prime}(x) u′(x)和 v ′ ( x ) v^{\prime}(x) v′(x) 都在 [ a , b ] [a, b] [a,b] 上可积,则有定积分分部积分公式:
∫ a b u ( x ) v ′ ( x ) d x = u ( x ) v ( x ) ∣ a b − ∫ a b u ′ ( x ) v ( x ) d x . ( 10 ) \int_{a}^{b} u(x) v^{\prime}(x) \mathrm{d} x=\left.u(x) v(x)\right|_{a} ^{b}-\int_{a}^{b} u^{\prime}(x) v(x) \mathrm{d} x .\quad\quad(10) ∫abu(x)v′(x)dx=u(x)v(x)∣ab−∫abu′(x)v(x)dx.(10)
例 6
计算
∫
0
π
2
sin
n
x
d
x
\int_{0}^{\frac{\pi}{2}} \sin ^{n} x \mathrm{~d} x
∫02πsinnx dx 和
∫
0
π
2
cos
n
x
d
x
,
n
=
1
,
2
,
⋯
\int_{0}^{\frac{\pi}{2}} \cos ^{n} x \mathrm{~d} x, n=1,2, \cdots
∫02πcosnx dx,n=1,2,⋯.
解
当
n
⩾
2
n \geqslant 2
n⩾2 时, 用分部积分求得
J n = ∫ 0 π 2 sin n x d x = − sin n − 1 x cos x ∣ 0 n 2 + ( n − 1 ) ∫ 0 π 2 sin n − 2 x cos 2 x d x = ( n − 1 ) ∫ 0 π 2 sin n − 2 x d x − ( n − 1 ) ∫ 0 π 2 sin n x d x = ( n − 1 ) J n − 2 − ( n − 1 ) J n . \begin{aligned} J_{n} & =\int_{0}^{\cfrac{\pi}{2}} \sin ^{n} x \mathrm{~d} x=-\left.\sin ^{n-1} x \cos x\right|_{0} ^{\cfrac{n}{2}}+(n-1) \int_{0}^{\cfrac{\pi}{2}} \sin ^{n-2} x \cos ^{2} x \mathrm{~d} x \\ & =(n-1) \int_{0}^{\cfrac{\pi}{2}} \sin ^{n-2} x \mathrm{~d} x-(n-1) \int_{0}^{\cfrac{\pi}{2}} \sin ^{n} x \mathrm{~d} x \\ & =(n-1) J_{n-2}-(n-1) J_{n} . \end{aligned} Jn=∫02πsinnx dx=−sinn−1xcosx 02n+(n−1)∫02πsinn−2xcos2x dx=(n−1)∫02πsinn−2x dx−(n−1)∫02πsinnx dx=(n−1)Jn−2−(n−1)Jn.
移项整理后得到递推公式:
J n = n − 1 n J n − 2 , n ⩾ 2. ( 11 ) J_{n}=\cfrac{n-1}{n} J_{n-2}, \quad n \geqslant 2 .\quad\quad(11) Jn=nn−1Jn−2,n⩾2.(11)
由于
J 0 = ∫ 0 π 2 d x = π 2 , J 1 = ∫ 0 π 2 sin x d x = 1 , J_{0}=\int_{0}^{\cfrac{\pi}{2}} \mathrm{~d} x=\cfrac{\pi}{2}, \quad J_{1}=\int_{0}^{\cfrac{\pi}{2}} \sin x \mathrm{~d} x=1, J0=∫02π dx=2π,J1=∫02πsinx dx=1,
重复应用递推式 (11) 便得
J 2 m = 2 m − 1 2 m ⋅ 2 m − 3 2 m − 2 ⋅ ⋯ ⋅ 1 2 ⋅ π 2 = ( 2 m − 1 ) ! ! ( 2 m ) ! ! ⋅ π 2 , J 2 m + 1 = 2 m 2 m + 1 ⋅ 2 m − 2 2 m − 1 ⋅ ⋯ ⋅ 2 3 ⋅ 1 = ( 2 m ) ! ! ( 2 m + 1 ) ! ! } ( 12 ) \left.\begin{array}{l} J_{2 m}=\cfrac{2 m-1}{2 m} \cdot \cfrac{2 m-3}{2 m-2} \cdot \cdots \cdot \cfrac{1}{2} \cdot \cfrac{\pi}{2}=\cfrac{(2 m-1) ! !}{(2 m) ! !} \cdot \cfrac{\pi}{2}, \\ J_{2 m+1}=\cfrac{2 m}{2 m+1} \cdot \cfrac{2 m-2}{2 m-1} \cdot \cdots \cdot \cfrac{2}{3} \cdot 1=\cfrac{(2 m) ! !}{(2 m+1) ! !} \end{array}\right\}\quad\quad(12) J2m=2m2m−1⋅2m−22m−3⋅⋯⋅21⋅2π=(2m)!!(2m−1)!!⋅2π,J2m+1=2m+12m⋅2m−12m−2⋅⋯⋅32⋅1=(2m+1)!!(2m)!!⎭ ⎬ ⎫(12)
令 x = π 2 − t x=\cfrac{\pi}{2}-t x=2π−t, 可得
∫ 0 π 2 cos n x d x = − ∫ π 2 0 cos n ( π 2 − t ) d t = ∫ 0 π 2 sin n x d x . \int_{0}^{\cfrac{\pi}{2}} \cos ^{n} x \mathrm{~d} x=-\int_{\cfrac{\pi}{2}}^{0} \cos ^{n}\left(\cfrac{\pi}{2}-t\right) \mathrm{d} t=\int_{0}^{\cfrac{\pi}{2}} \sin ^{n} x \mathrm{~d} x . ∫02πcosnx dx=−∫2π0cosn(2π−t)dt=∫02πsinnx dx.
因而这两个定积分是等值的.
由例 6 结论 (12) 可导出著名的沃利斯 (Wallis) 公式:
π 2 = lim m → ∞ [ ( 2 m ) ! ! ( 2 m − 1 ) ! ! ] 2 ⋅ 1 2 m + 1 . ( 13 ) \cfrac{\pi}{2}=\lim \limits_{m \rightarrow \infty}\left[\cfrac{(2 m) ! !}{(2 m-1) ! !}\right]^{2} \cdot \cfrac{1}{2 m+1} .\quad\quad(13) 2π=m→∞lim[(2m−1)!!(2m)!!]2⋅2m+11.(13)
事实上,由
∫ 0 π 2 sin 2 m + 1 x d x < ∫ 0 π 2 sin 2 m x d x < ∫ 0 π 2 sin 2 m − 1 x d x , \int_{0}^{\cfrac{\pi}{2}} \sin ^{2 m+1} x \mathrm{~d} x<\int_{0}^{\cfrac{\pi}{2}} \sin ^{2 m} x \mathrm{~d} x<\int_{0}^{\cfrac{\pi}{2}} \sin ^{2 m-1} x \mathrm{~d} x, ∫02πsin2m+1x dx<∫02πsin2mx dx<∫02πsin2m−1x dx,
把(12) 式代入, 得到
( 2 m ) ! ! ( 2 m + 1 ) ! ! < ( 2 m − 1 ) ! ! ( 2 m ) ! ! ⋅ π 2 < ( 2 m − 2 ) ! ! ( 2 m − 1 ) ! ! , \cfrac{(2 m) ! !}{(2 m+1) ! !}<\cfrac{(2 m-1) ! !}{(2 m) ! !} \cdot \cfrac{\pi}{2}<\cfrac{(2 m-2) ! !}{(2 m-1) ! !}, (2m+1)!!(2m)!!<(2m)!!(2m−1)!!⋅2π<(2m−1)!!(2m−2)!!,
由此又得
A m = [ ( 2 m ) ! ! ( 2 m − 1 ) ! ! ] 2 1 2 m + 1 < π 2 < [ ( 2 m ) ! ! ( 2 m − 1 ) ! ! ] 2 1 2 m = B m . A_{m}=\left[\cfrac{(2 m) ! !}{(2 m-1) ! !}\right]^{2} \cfrac{1}{2 m+1}<\cfrac{\pi}{2}<\left[\cfrac{(2 m) ! !}{(2 m-1) ! !}\right]^{2} \cfrac{1}{2 m}=B_{m} . Am=[(2m−1)!!(2m)!!]22m+11<2π<[(2m−1)!!(2m)!!]22m1=Bm.
因为
0 < B m − A m = [ ( 2 m ) ! ! ( 2 m − 1 ) ! ! ] 2 1 2 m ( 2 m + 1 ) < 1 2 m ⋅ π 2 → 0 ( m → ∞ ) , 0<B_{m}-A_{m}=\left[\cfrac{(2 m) ! !}{(2 m-1) ! !}\right]^{2} \cfrac{1}{2 m(2 m+1)}<\cfrac{1}{2 m} \cdot \cfrac{\pi}{2} \rightarrow 0(m \rightarrow \infty), 0<Bm−Am=[(2m−1)!!(2m)!!]22m(2m+1)1<2m1⋅2π→0(m→∞),
所以 lim m → ∞ ( B m − A m ) = 0 \lim \limits_{m \rightarrow \infty}\left(B_{m}-A_{m}\right)=0 m→∞lim(Bm−Am)=0. 而 π 2 − A m < B m − A m \cfrac{\pi}{2}-A_{m}<B_{m}-A_{m} 2π−Am<Bm−Am, 故得
lim m → ∞ A m = π 2 (即 (13) 式). \lim \limits_{m \rightarrow \infty} A_{m}=\cfrac{\pi}{2} \text { (即 (13) 式). } m→∞limAm=2π (即 (13) 式).
沃利斯公式 (13) 揭示了 π \pi π 与整数之间的一种很不寻常的关系.