数学分析(九)-定积分5-2-定积分计算2-2:Wallis/沃利斯公式【揭示了π与整数之间的一种关系】

定理 9.13 (定积分分部积分法)

u ( x ) , v ( x ) u(x), v(x) u(x),v(x) [ a , b ] [a, b] [a,b] 上的可微函数,且 u ′ ( x ) u^{\prime}(x) u(x) v ′ ( x ) v^{\prime}(x) v(x) 都在 [ a , b ] [a, b] [a,b] 上可积,则有定积分分部积分公式:

∫ a b u ( x ) v ′ ( x ) d x = u ( x ) v ( x ) ∣ a b − ∫ a b u ′ ( x ) v ( x ) d x . ( 10 ) \int_{a}^{b} u(x) v^{\prime}(x) \mathrm{d} x=\left.u(x) v(x)\right|_{a} ^{b}-\int_{a}^{b} u^{\prime}(x) v(x) \mathrm{d} x .\quad\quad(10) abu(x)v(x)dx=u(x)v(x)ababu(x)v(x)dx.(10)


例 6
计算 ∫ 0 π 2 sin ⁡ n x   d x \int_{0}^{\frac{\pi}{2}} \sin ^{n} x \mathrm{~d} x 02πsinnx dx ∫ 0 π 2 cos ⁡ n x   d x , n = 1 , 2 , ⋯ \int_{0}^{\frac{\pi}{2}} \cos ^{n} x \mathrm{~d} x, n=1,2, \cdots 02πcosnx dx,n=1,2,.


n ⩾ 2 n \geqslant 2 n2 时, 用分部积分求得

J n = ∫ 0 π 2 sin ⁡ n x   d x = − sin ⁡ n − 1 x cos ⁡ x ∣ 0 n 2 + ( n − 1 ) ∫ 0 π 2 sin ⁡ n − 2 x cos ⁡ 2 x   d x = ( n − 1 ) ∫ 0 π 2 sin ⁡ n − 2 x   d x − ( n − 1 ) ∫ 0 π 2 sin ⁡ n x   d x = ( n − 1 ) J n − 2 − ( n − 1 ) J n . \begin{aligned} J_{n} & =\int_{0}^{\cfrac{\pi}{2}} \sin ^{n} x \mathrm{~d} x=-\left.\sin ^{n-1} x \cos x\right|_{0} ^{\cfrac{n}{2}}+(n-1) \int_{0}^{\cfrac{\pi}{2}} \sin ^{n-2} x \cos ^{2} x \mathrm{~d} x \\ & =(n-1) \int_{0}^{\cfrac{\pi}{2}} \sin ^{n-2} x \mathrm{~d} x-(n-1) \int_{0}^{\cfrac{\pi}{2}} \sin ^{n} x \mathrm{~d} x \\ & =(n-1) J_{n-2}-(n-1) J_{n} . \end{aligned} Jn=02πsinnx dx=sinn1xcosx 02n+(n1)02πsinn2xcos2x dx=(n1)02πsinn2x dx(n1)02πsinnx dx=(n1)Jn2(n1)Jn.

移项整理后得到递推公式:

J n = n − 1 n J n − 2 , n ⩾ 2. ( 11 ) J_{n}=\cfrac{n-1}{n} J_{n-2}, \quad n \geqslant 2 .\quad\quad(11) Jn=nn1Jn2,n2.(11)

由于

J 0 = ∫ 0 π 2   d x = π 2 , J 1 = ∫ 0 π 2 sin ⁡ x   d x = 1 , J_{0}=\int_{0}^{\cfrac{\pi}{2}} \mathrm{~d} x=\cfrac{\pi}{2}, \quad J_{1}=\int_{0}^{\cfrac{\pi}{2}} \sin x \mathrm{~d} x=1, J0=02π dx=2π,J1=02πsinx dx=1,

重复应用递推式 (11) 便得

J 2 m = 2 m − 1 2 m ⋅ 2 m − 3 2 m − 2 ⋅ ⋯ ⋅ 1 2 ⋅ π 2 = ( 2 m − 1 ) ! ! ( 2 m ) ! ! ⋅ π 2 , J 2 m + 1 = 2 m 2 m + 1 ⋅ 2 m − 2 2 m − 1 ⋅ ⋯ ⋅ 2 3 ⋅ 1 = ( 2 m ) ! ! ( 2 m + 1 ) ! ! } ( 12 ) \left.\begin{array}{l} J_{2 m}=\cfrac{2 m-1}{2 m} \cdot \cfrac{2 m-3}{2 m-2} \cdot \cdots \cdot \cfrac{1}{2} \cdot \cfrac{\pi}{2}=\cfrac{(2 m-1) ! !}{(2 m) ! !} \cdot \cfrac{\pi}{2}, \\ J_{2 m+1}=\cfrac{2 m}{2 m+1} \cdot \cfrac{2 m-2}{2 m-1} \cdot \cdots \cdot \cfrac{2}{3} \cdot 1=\cfrac{(2 m) ! !}{(2 m+1) ! !} \end{array}\right\}\quad\quad(12) J2m=2m2m12m22m3212π=(2m)!!(2m1)!!2π,J2m+1=2m+12m2m12m2321=(2m+1)!!(2m)!! (12)

x = π 2 − t x=\cfrac{\pi}{2}-t x=2πt, 可得

∫ 0 π 2 cos ⁡ n x   d x = − ∫ π 2 0 cos ⁡ n ( π 2 − t ) d t = ∫ 0 π 2 sin ⁡ n x   d x . \int_{0}^{\cfrac{\pi}{2}} \cos ^{n} x \mathrm{~d} x=-\int_{\cfrac{\pi}{2}}^{0} \cos ^{n}\left(\cfrac{\pi}{2}-t\right) \mathrm{d} t=\int_{0}^{\cfrac{\pi}{2}} \sin ^{n} x \mathrm{~d} x . 02πcosnx dx=2π0cosn(2πt)dt=02πsinnx dx.

因而这两个定积分是等值的.


由例 6 结论 (12) 可导出著名的沃利斯 (Wallis) 公式:

π 2 = lim ⁡ m → ∞ [ ( 2 m ) ! ! ( 2 m − 1 ) ! ! ] 2 ⋅ 1 2 m + 1 . ( 13 ) \cfrac{\pi}{2}=\lim \limits_{m \rightarrow \infty}\left[\cfrac{(2 m) ! !}{(2 m-1) ! !}\right]^{2} \cdot \cfrac{1}{2 m+1} .\quad\quad(13) 2π=mlim[(2m1)!!(2m)!!]22m+11.(13)

事实上,由

∫ 0 π 2 sin ⁡ 2 m + 1 x   d x < ∫ 0 π 2 sin ⁡ 2 m x   d x < ∫ 0 π 2 sin ⁡ 2 m − 1 x   d x , \int_{0}^{\cfrac{\pi}{2}} \sin ^{2 m+1} x \mathrm{~d} x<\int_{0}^{\cfrac{\pi}{2}} \sin ^{2 m} x \mathrm{~d} x<\int_{0}^{\cfrac{\pi}{2}} \sin ^{2 m-1} x \mathrm{~d} x, 02πsin2m+1x dx<02πsin2mx dx<02πsin2m1x dx,

把(12) 式代入, 得到

( 2 m ) ! ! ( 2 m + 1 ) ! ! < ( 2 m − 1 ) ! ! ( 2 m ) ! ! ⋅ π 2 < ( 2 m − 2 ) ! ! ( 2 m − 1 ) ! ! , \cfrac{(2 m) ! !}{(2 m+1) ! !}<\cfrac{(2 m-1) ! !}{(2 m) ! !} \cdot \cfrac{\pi}{2}<\cfrac{(2 m-2) ! !}{(2 m-1) ! !}, (2m+1)!!(2m)!!<(2m)!!(2m1)!!2π<(2m1)!!(2m2)!!,

由此又得

A m = [ ( 2 m ) ! ! ( 2 m − 1 ) ! ! ] 2 1 2 m + 1 < π 2 < [ ( 2 m ) ! ! ( 2 m − 1 ) ! ! ] 2 1 2 m = B m . A_{m}=\left[\cfrac{(2 m) ! !}{(2 m-1) ! !}\right]^{2} \cfrac{1}{2 m+1}<\cfrac{\pi}{2}<\left[\cfrac{(2 m) ! !}{(2 m-1) ! !}\right]^{2} \cfrac{1}{2 m}=B_{m} . Am=[(2m1)!!(2m)!!]22m+11<2π<[(2m1)!!(2m)!!]22m1=Bm.

因为

0 < B m − A m = [ ( 2 m ) ! ! ( 2 m − 1 ) ! ! ] 2 1 2 m ( 2 m + 1 ) < 1 2 m ⋅ π 2 → 0 ( m → ∞ ) , 0<B_{m}-A_{m}=\left[\cfrac{(2 m) ! !}{(2 m-1) ! !}\right]^{2} \cfrac{1}{2 m(2 m+1)}<\cfrac{1}{2 m} \cdot \cfrac{\pi}{2} \rightarrow 0(m \rightarrow \infty), 0<BmAm=[(2m1)!!(2m)!!]22m(2m+1)1<2m12π0(m),

所以 lim ⁡ m → ∞ ( B m − A m ) = 0 \lim \limits_{m \rightarrow \infty}\left(B_{m}-A_{m}\right)=0 mlim(BmAm)=0. 而 π 2 − A m < B m − A m \cfrac{\pi}{2}-A_{m}<B_{m}-A_{m} 2πAm<BmAm, 故得

lim ⁡ m → ∞ A m = π 2  (即 (13) 式).  \lim \limits_{m \rightarrow \infty} A_{m}=\cfrac{\pi}{2} \text { (即 (13) 式). } mlimAm=2π ( (13) ). 

沃利斯公式 (13) 揭示了 π \pi π 与整数之间的一种很不寻常的关系.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值