数学分析(九)-定积分5-2-定积分计算2-3:推广的分部积分公式【∫ₐᵇuvⁿ⁺¹dx=[uv⁽ⁿ⁾-u´v⁽ⁿ⁻¹⁾+…+(-1)ⁿu⁽ⁿ⁾v]ₐᵇ+(-1)⁽ⁿ⁺¹⁾∫ₐᵇu⁽ⁿ⁺¹⁾vdx】

若在 [ a , b ] [a, b] [a,b] u ( x ) , v ( x ) u(x), v(x) u(x),v(x) n + 1 n+1 n+1 阶连续导函数, 则有

∫ a b u ( x ) v ( n + 1 ) ( x ) d x = [ u ( x ) v ( n ) ( x ) − u ′ ( x ) v ( n − 1 ) ( x ) + ⋯ + ( − 1 ) n u ( n ) ( x ) v ( x ) ] a b ( n = 1 , 2 , ⋯   ) ( 14 ) + ( − 1 ) n + 1 ∫ a b u ( n + 1 ) ( x ) v ( x ) d x \begin{aligned} \int_{a}^{b} u(x) v^{(n+1)}(x) \mathrm{d} x &= {\left[u(x) v^{(n)}(x)-u^{\prime}(x) v^{(n-1)}(x) +\cdots+\right.} \left.(-1)^{n} u^{(n)}(x) v(x)\right]_{a}^{b} \\ &\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad(n=1,2, \cdots) \quad\quad(14) \\ &+(-1)^{n+1} \int_{a}^{b} u^{(n+1)}(x) v(x) \mathrm{d} x \\ \end{aligned} abu(x)v(n+1)(x)dx=[u(x)v(n)(x)u(x)v(n1)(x)++(1)nu(n)(x)v(x)]ab(n=1,2,)(14)+(1)n+1abu(n+1)(x)v(x)dx

这是推广的分部积分公式,读者不难用数学归纳法加以证明.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值