若在 [ a , b ] [a, b] [a,b] 上 u ( x ) , v ( x ) u(x), v(x) u(x),v(x) 有 n + 1 n+1 n+1 阶连续导函数, 则有
∫ a b u ( x ) v ( n + 1 ) ( x ) d x = [ u ( x ) v ( n ) ( x ) − u ′ ( x ) v ( n − 1 ) ( x ) + ⋯ + ( − 1 ) n u ( n ) ( x ) v ( x ) ] a b ( n = 1 , 2 , ⋯ ) ( 14 ) + ( − 1 ) n + 1 ∫ a b u ( n + 1 ) ( x ) v ( x ) d x \begin{aligned} \int_{a}^{b} u(x) v^{(n+1)}(x) \mathrm{d} x &= {\left[u(x) v^{(n)}(x)-u^{\prime}(x) v^{(n-1)}(x) +\cdots+\right.} \left.(-1)^{n} u^{(n)}(x) v(x)\right]_{a}^{b} \\ &\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad(n=1,2, \cdots) \quad\quad(14) \\ &+(-1)^{n+1} \int_{a}^{b} u^{(n+1)}(x) v(x) \mathrm{d} x \\ \end{aligned} ∫abu(x)v(n+1)(x)dx=[u(x)v(n)(x)−u′(x)v(n−1)(x)+⋯+(−1)nu(n)(x)v(x)]ab(n=1,2,⋯)(14)+(−1)n+1∫abu(n+1)(x)v(x)dx
这是推广的分部积分公式,读者不难用数学归纳法加以证明.