在第3节第二段里, 我们已经引人了上和 S ( T ) S(T) S(T) 和下和 s ( T ) s(T) s(T) 的概念.
即对于分割 T T T : a = x 0 < x 1 < ⋯ < x n = b a=x_{0}<x_{1}<\cdots<x_{n}=b a=x0<x1<⋯<xn=b, 以及 Δ = [ x i − 1 , x i ] , Δ x i = x i − x i − 1 \Delta=\left[x_{i-1}, x_{i}\right], \Delta x_{i}=x_{i}-x_{i-1} Δ=[xi−1,xi],Δxi=xi−xi−1, 有
S ( T ) = ∑ i = 1 n M i Δ x i , s ( T ) = ∑ i = 1 n m i Δ x i , S(T)=\sum_{i=1}^{n} M_{i} \Delta x_{i}, \quad s(T)=\sum_{i=1}^{n} m_{i} \Delta x_{i}, S(T)=i=1∑nMiΔxi,s(T)=i=1∑nmiΔxi,
其中
- M i = sup x ∈ Δ i f ( x ) \begin{aligned}M_{i}=\sup _{x \in \Delta_{i}} f(x)\end{aligned} Mi=x∈Δisupf(x),
- m i = inf x ∈ Δ i f ( x ) \begin{aligned}m_{i}=\inf _{x \in \Delta_{i}} f(x)\end{aligned} mi=x∈Δiinff(x),
- i = 1 , 2 , ⋯ , n i=1,2, \cdots, n i=1,2,⋯,n.
由于假设 f f f 在 [ a , b ] [a, b]