数学分析(九)-定积分3-4-可积性理论1-2:上和与下和的性质2【设T´为分割T添加p个新分点后所得到的分割,则:增加分点后, 上和不增,下和不减】

本文介绍了数学分析中上和S(T)与下和s(T)的概念,当向分割T添加分点形成T'时,上和不增,下和不减的性质。通过证明不等式(2)和(3),阐述了这一性质如何帮助推导可积性的条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在第3节第二段里, 我们已经引人了上和 S ( T ) S(T) S(T) 和下和 s ( T ) s(T) s(T) 的概念.

即对于分割 T T T : a = x 0 < x 1 < ⋯ < x n = b a=x_{0}<x_{1}<\cdots<x_{n}=b a=x0<x1<<xn=b, 以及 Δ = [ x i − 1 , x i ] , Δ x i = x i − x i − 1 \Delta=\left[x_{i-1}, x_{i}\right], \Delta x_{i}=x_{i}-x_{i-1} Δ=[xi1,xi],Δxi=xixi1, 有

S ( T ) = ∑ i = 1 n M i Δ x i , s ( T ) = ∑ i = 1 n m i Δ x i , S(T)=\sum_{i=1}^{n} M_{i} \Delta x_{i}, \quad s(T)=\sum_{i=1}^{n} m_{i} \Delta x_{i}, S(T)=i=1nMiΔxi,s(T)=i=1nmiΔxi,

其中

  • M i = sup ⁡ x ∈ Δ i f ( x ) \begin{aligned}M_{i}=\sup _{x \in \Delta_{i}} f(x)\end{aligned} Mi=xΔisupf(x),
  • m i = inf ⁡ x ∈ Δ i f ( x ) \begin{aligned}m_{i}=\inf _{x \in \Delta_{i}} f(x)\end{aligned} mi=xΔiinff(x),
  • i = 1 , 2 , ⋯   , n i=1,2, \cdots, n i=1,2,,n.

由于假设 f f f [ a , b ] [a, b]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值