数学分析(十)-定积分的应用1-平面图形的面积1-2:普通方程案例【抛物线与直线所围平面图形的面积】【解法①:以x为积分变量;解法②:以y为积分变量】

本文介绍了如何计算抛物线 y^2 = x 和直线 x - 2y - 3 = 0 围成的平面图形的面积。通过两种解法,一是以 x 为积分变量,二是以 y 为积分变量,最终得出面积为 33/2。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一般地, 由上、下两条连续曲线 y = f 2 ( x ) y=f_{2}(x) y=f2(x) y = f 1 ( x ) y=f_{1}(x) y=f1(x) 以及两条直线 x = a x=a x=a x = b ( a < x=b(a< x=b(a< b) 所围的平面图形 (图 10-1), 它的面积计算公式为

A = ∫ a b [ f 2 ( x ) − f 1 ( x ) ] d x . ( 1 ) A=\int_{a}^{b}\left[f_{2}(x)-f_{1}(x)\right] \mathrm{d} x .\quad\quad(1) A=ab[f2(x)f1(x)]dx.(1)


在这里插入图片描述

例 1
求由抛物线 y 2 = x y^{2}=x y2=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值