一般地, 由上、下两条连续曲线 y = f 2 ( x ) y=f_{2}(x) y=f2(x) 与 y = f 1 ( x ) y=f_{1}(x) y=f1(x) 以及两条直线 x = a x=a x=a 与 x = b ( a < x=b(a< x=b(a< b) 所围的平面图形 (图 10-1), 它的面积计算公式为
A = ∫ a b [ f 2 ( x ) − f 1 ( x ) ] d x . ( 1 ) A=\int_{a}^{b}\left[f_{2}(x)-f_{1}(x)\right] \mathrm{d} x .\quad\quad(1) A=∫ab[f2(x)−f1(x)]dx.(1)
例 1
求由抛物线 y 2 = x y^{2}=x y2=