设平面光滑曲线 C C C 的方程为
y = f ( x ) , x ∈ [ a , b ] (不妨设 f ( x ) ⩾ 0 ). y=f(x), x \in[a, b] \text { (不妨设 } f(x) \geqslant 0 \text { ). } y=f(x),x∈[a,b] (不妨设 f(x)⩾0 ).
这段曲线绕 x x x 轴旋转一周得到旋转曲面 (图10-21).下面用微元法导出它的面积公式 ① {}^{①} ①.
①:关于曲面的积的严格定义和一般计算公式要在下册重积分章节里给出.
如果光滑曲线 C C C 由参数方程
x = x ( t ) , y = y ( t ) , t ∈ [ α , β ] x=x(t), y=y(t), t \in[\alpha, \beta] x=x(t),y=y(t),t∈[α,β]
给出, 且 y