数学分析(十)-定积分的应用4-旋转曲面2-旋转曲面的面积2:参数方程【光滑曲线C由参数方程x=x(t),y=y(t)且t∈[α,β]给出;S=2π∫ₐᵝy(t)√[x´²(t)+y´²(t)]dt】

这篇博客探讨了平面光滑曲线绕x轴旋转形成旋转曲面的面积计算方法,通过参数方程给出公式S=2π∫ₐᵝy(t)√[x´²(t)+y´²(t)]dt,并举例计算了内摆线绕x轴旋转的曲面面积。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

设平面光滑曲线 C C C 的方程为

y = f ( x ) , x ∈ [ a , b ]  (不妨设  f ( x ) ⩾ 0  ).  y=f(x), x \in[a, b] \text { (不妨设 } f(x) \geqslant 0 \text { ). } y=f(x),x[a,b] (不妨设 f(x)0 ). 

这段曲线绕 x x x 轴旋转一周得到旋转曲面 (图10-21).下面用微元法导出它的面积公式 ① {}^{①} .

①:关于曲面的积的严格定义和一般计算公式要在下册重积分章节里给出.

在这里插入图片描述

如果光滑曲线 C C C 由参数方程

x = x ( t ) , y = y ( t ) , t ∈ [ α , β ] x=x(t), y=y(t), t \in[\alpha, \beta] x=x(t),y=y(t),t[α,β]

给出, 且 y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值