复变函数论1-1-复数4-1-2:DeMoivre/棣莫弗公式【(cosθ+isinθ)ⁿ=cosnθ+isinnθ】【从复数的乘幂推导而得到】

本文探讨了复数的乘幂,特别是当z=reiθ时,zn=rn(cosnθ+isinnθ)。通过这个表达式,导出了DeMoivre公式:(cosθ+isinθ)n=cosnθ+isinnθ。以此为例,解构了如何使用该公式求cos3θ和sin3θ的表达式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

一、复数的乘幂

作为乘积的特例, 我们考虑非零复数 z z z 的正整数次淂 z n z^{n} zn, 它是 n n n个相同因子的乘积. 设 z = r e i θ z=r \mathrm{e}^{i \theta} z=reiθ, 则

z n = r n e i n θ = 将 n θ 看做一个整体 将 r n 看做一个整体 r n ( cos ⁡ n θ + i sin ⁡ n θ ) , z^{n}=r^{n} \mathrm{e}^{\mathrm{i} n \theta}\xlongequal[将n \theta看做一个整体]{将r^{n}看做一个整体}r^{n}(\cos n \theta+\mathrm{i} \sin n \theta), zn=rneinθrn看做一个整体 nθ看做一个整体r

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值