一、复数的乘幂
作为乘积的特例, 我们考虑非零复数 z z z 的正整数次淂 z n z^{n} zn, 它是 n n n个相同因子的乘积. 设 z = r e i θ z=r \mathrm{e}^{i \theta} z=reiθ, 则
z n = r n e i n θ = 将 n θ 看做一个整体 将 r n 看做一个整体 r n ( cos n θ + i sin n θ ) , z^{n}=r^{n} \mathrm{e}^{\mathrm{i} n \theta}\xlongequal[将n \theta看做一个整体]{将r^{n}看做一个整体}r^{n}(\cos n \theta+\mathrm{i} \sin n \theta), zn=rneinθ将rn看做一个整体将nθ看做一个整体r