复变函数论2-解析函数3-初等多值函数1-3:辐角函数【w=Argz=argz+2kπ(其中,k=0,±1,±2,…)】【辐角函数的多值性正是由于它围绕原点旋转的圈数】

复变函数中,非零复数z的辐角θ(Argz)定义为实轴正向与向量Oz之间的夹角,存在无穷多个值,主值限制在-π到π之间。当k=0,±1,±2,...时,θ=Argz=argz+2kπ。辐角函数的多值性源于其绕原点旋转的圈数,不同的曲线路径会导致幅角改变量相差2π的整数倍。对于z=0,幅角没有意义。" 123735999,8259801,SpringBoot与Mybatis Plus集成的多数据源连接实战,"['springboot', '数据库', 'java', 'mybatis-plus', '多数据源']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

实轴正向到非零复数 z = x + i y z=x+\mathrm{i} y z=x+iy 所对应的向量 O z → \overrightarrow{O z} Oz 间的夹角 θ \theta θ 满足

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值