复变函数论2-解析函数2-初等解析函数1-复指数函数2-eᶻ性质4:指数函数的加法定理成立【eᶻ¹⁺ᶻ²=eᶻ¹eᶻ²】

本文介绍了复变函数论中的复指数函数ez,阐述了其解析性质、周期性以及加法定理。通过ez的定义和性质,揭示了其在复平面上的行为,包括ez的基本周期为2πi,以及ez=ez1ez2的加法性质。同时,文章指出复指数函数与实数指数函数的区别,并通过例证证明了复指数函数的周期性。
摘要由CSDN通过智能技术生成

初等复变函数是一种最简单、最基本、最常用的函数类,在复变函数论及其应用中起着重要的作用.

在初等数学里曾用初等方法 (几何的、代数的) 讨论过初等函数,揭示了它们的一些性质; 在数学分析中曾用分析的方法讨论过它们,
并得到了许多有用的重要性质(连续性、可导性). 但是, 当时受实数范围的限制,没有看到它们的全貌.

现在, 我们即将盾到, 当初等函数推广到复数时, 又揭示出许多重要性质,如指数函数的周期性, 正弦函数、余弦函数的无界性等.


由例 2.10 , 我们知道 f ( z ) = e x ( cos ⁡ y + i sin ⁡ y ) f(z)=\mathrm{e}^{x}(\cos y+\mathrm{i} \sin y) f(z)=ex(cosy+isiny) z z z 平面上解析, 且 f ′ ( z ) = f ( z ) f^{\prime}(z)=f(z) f(z)=f(z).进一步, 还易验证

f ( z 1 + z 2 ) = f ( z 1 ) f ( z 2 ) f\left(z_{1}+z_{2}\right)=f\left(z_{1}\right) f\left(z_{2}\right) f(z1+z2)=f(z1)f(z2)

因此,我们有理由给出下面定义.

定义 2.4

对于任何复数 z = x + i y z=x+\mathrm{i} y z=x+iy,我们用关系式

e z = e x + i y = e x ( cos ⁡ y + i sin ⁡ y ) ( 2.11 ) \mathrm{e}^{z}=\mathrm{e}^{x+\mathrm{i} y}=\mathrm{e}^{x}(\cos y+\mathrm{i} \sin y) \quad\quad (2.11) ez=ex+iy=ex(cosy+isiny)(2.11)

定义 指数函数 e z \mathrm{e}^{z} ez.

对于复指数函数 e z \mathrm{e}^{z} ez, 我们指出它具有如下的性质:

  1. 对于实数 z = x ( y = 0 ) z=x(y=0) z=x(y=0) 来说,我们的定义与通常实指数函数的定义是一致的.
  2. ∣ e z ∣ = e x > 0 \left|\mathrm{e}^{z}\right|=\mathrm{e}^{x}>0 ez=ex>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值