初等复变函数是一种最简单、最基本、最常用的函数类,在复变函数论及其应用中起着重要的作用.
在初等数学里曾用初等方法 (几何的、代数的) 讨论过初等函数,揭示了它们的一些性质; 在数学分析中曾用分析的方法讨论过它们,
并得到了许多有用的重要性质(连续性、可导性). 但是, 当时受实数范围的限制,没有看到它们的全貌.
现在, 我们即将盾到, 当初等函数推广到复数时, 又揭示出许多重要性质,如指数函数的周期性, 正弦函数、余弦函数的无界性等.
由例 2.10 , 我们知道 f ( z ) = e x ( cos y + i sin y ) f(z)=\mathrm{e}^{x}(\cos y+\mathrm{i} \sin y) f(z)=ex(cosy+isiny) 在 z z z 平面上解析, 且 f ′ ( z ) = f ( z ) f^{\prime}(z)=f(z) f′(z)=f(z).进一步, 还易验证
f ( z 1 + z 2 ) = f ( z 1 ) f ( z 2 ) f\left(z_{1}+z_{2}\right)=f\left(z_{1}\right) f\left(z_{2}\right) f(z1+z2)=f(z1)f(z2)
因此,我们有理由给出下面定义.
定义 2.4
对于任何复数 z = x + i y z=x+\mathrm{i} y z=x+iy,我们用关系式
e z = e x + i y = e x ( cos y + i sin y ) ( 2.11 ) \mathrm{e}^{z}=\mathrm{e}^{x+\mathrm{i} y}=\mathrm{e}^{x}(\cos y+\mathrm{i} \sin y) \quad\quad (2.11) ez=ex+iy=ex(cosy+isiny)(2.11)
来 定义 指数函数 e z \mathrm{e}^{z} ez.
对于复指数函数 e z \mathrm{e}^{z} ez, 我们指出它具有如下的性质:
- 对于实数 z = x ( y = 0 ) z=x(y=0) z=x(y=0) 来说,我们的定义与通常实指数函数的定义是一致的.
- ∣ e z ∣ = e x > 0 \left|\mathrm{e}^{z}\right|=\mathrm{e}^{x}>0 ∣ez∣=ex>