e z = e x + i y = e x ( cos y + i sin y ) ( 2.11 ) \mathrm{e}^{z}=\mathrm{e}^{x+\mathrm{i} y}=\mathrm{e}^{x}(\cos y+\mathrm{i} \sin y) \quad\quad (2.11) ez=ex+iy=
复变函数论2-解析函数2-初等解析函数2-复三角函数1-复数z的正/余弦函数2-1:性质1【对于z为实数y来说,复正弦/余弦函数的定义与通常正弦函数及余弦函数的定义是一致的】
于 2024-05-04 16:29:38 首次发布
本文介绍了复变函数论中的复数正弦和余弦函数定义,即sinz=2ieiz-e^(-iz)和cosz=2eiz+e^(-iz),并指出当z为实数y时,这些定义与常规的正弦和余弦函数相符。
摘要由CSDN通过智能技术生成