复变函数论3-复变函数的积分1-3-复变函数积分的基本性质2:积分估值【若f沿C连续且有正数M使│f(z)│⩽M,L为C长度,则:│∫ᶜf(z)dz│⩽ML】【实变函数的积分中值定理不能推广到复积分】

该篇博客探讨了复变函数积分的一些基本性质,包括积分的线性性、积分的相反性和估值定理。定理3.2指出,如果函数f(z)沿曲线C连续且有上界M,那么积分的绝对值不超过ML。举例说明了如何利用这些性质证明特定积分的估值。同时指出,实变函数的积分中值定理不适用于复积分的情况。
摘要由CSDN通过智能技术生成

设函数 f ( z ) , g ( z ) f(z), g(z) f(z),g(z) 沿曲线 C C C 连续,则有下列与数学分析中的曲线积分相类似的性质:

  1. ∫ C a f ( z ) d z = a ∫ C f ( z ) d z , a \int_{C} a f(z) \mathrm{d} z=a \int_{C} f(z) \mathrm{d} z, a Caf(z)dz=aCf(z)dz,a是复常数.

  2. ∫ C [ f ( z ) + g ( z ) ] d z = ∫ C f ( z ) d z + ∫ C g ( z ) d z \int_{C}[f(z)+g(z)] \mathrm{d} z=\int_{C} f(z) \mathrm{d} z+\int_{C} g(z) \mathrm{d} z C[f(z)+g(z)]dz=Cf(z)dz+Cg(z)dz.

  3. ∫ C f ( z ) d z = ∫ C 1 f ( z ) d z + ∫ C z f ( z ) d z \int_{C} f(z) \mathrm{d} z=\int_{C_{1}} f(z) \mathrm{d} z+\int_{C_{z}} f(z) \mathrm{d} z Cf(z)dz=C1f(z)dz+Czf(z)dz,其中 C C C 由曲线 C 1 C_{1} C1 C 2 C_{2} C2 衔接而成.

  4. ∫ C − f ( z ) d z = − ∫ C f ( z ) d z \int_{C^{-}} f(z) \mathrm{d} z=-\int_{C} f(z) \mathrm{d} z Cf(z)dz=Cf(z)dz.

  5. ∣ ∫ C f ( z ) d z ∣ ⩽ ∫ C ∣ f ( z ) ∣ ∣ d z ∣ = ∫ C ∣ f ( z ) ∣ d s \left|\int_{C} f(z) \mathrm{d} z\right| \leqslant \int_{C}|f(z)||\mathrm{d} z|=\int_{C}|f(z)| \mathrm{d} s Cf(z)dz

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值