实变函数论1-集合1-集合表示1:集合的表示【N表示自然数集, Z表示整数集,Q表示有理数集,R表示实数集,∅表示不含任何元素的空集】

本文介绍了集合论的基本概念,包括无限集合的并、交和补运算。实变函数论建立在实数理论和集合论基础上,文中举例展示了不同类型的集合,如自然数集N,整数集Z,有理数集Q,实数集R,以及空集∅。此外,文章还讨论了如何定义和表示集合,以及函数的值域和原像的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

早在中学里我们就已接触过集合的概念,以及集合的并、交、补的运算,因此本章的前两节具有复习性质.

不过,无限多个集合的并与交,是以前没有接触过的.它在本书中常常要用到,是学习实变函数论时的一项基本功。

康托尔( Cantor)在19世纪创立了"集合论",对无限集合也以大小、多少来分.

例如他断言:全体实数比全体有理数"多"。这是数学向无限王国挺进的重要里程碑,也是实变函数论的出发点.

实变函数论建立在实数理论集合论的基础之上,对于实数的性质,我们假定读者已经学过,所以本书只是介绍集合论方面的基本知识。

集合是数学中所谓原始概念之一,不能用别的概念加以定义.
在这里插入图片描述
就目前来说,我们只要求掌握以下朴素的说法:
“在一定范围内的个体事物的全体,当将它们看作一个整体时,我们把这个整体称为一个集合,其中每个个体事物叫做该集合的元素.”

顺便说明一下,

  • 一个集合的各个元素必须是彼此互异的;
  • 哪些事物是给定集合的元素必须是明确的.

下面举出几个集合的例子.

例1
4,7,8,3四个自然数构成的集合
例2
全体自然数
例3
0与1之间的实数全体
例4
平面上的向量全体
例5
[ 0 , 1 ] [ 0 , 1 ] [0,1] 上的所有实函数全体
例6
A , B , C A , B , C A,B,C 三个字母构成的集合.

"全体高个子"并不构成一个集合.因为一个人究竟算不算"高个子"并没有明确的界限,有时难以判断他是否属于这个集合

在这里插入图片描述

一个具体集合 A A A 可以通过列举其元素 a , b , c , ⋯ a , b , c , \cdots a,b,c, 来定义,可记为

A = { a , b , c , ⋯   } , A = \{ a , b , c , \cdots \} , A={ a,b,c,},

也可以通过该集合中的各元素必须且只需满足的条件 p p p 来定义,并记为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值