早在中学里我们就已接触过集合的概念,以及集合的并、交、补的运算,因此本章的前两节具有复习性质.
不过,无限多个集合的并与交,是以前没有接触过的.它在本书中常常要用到,是学习实变函数论时的一项基本功。
康托尔( Cantor)在19世纪创立了"集合论",对无限集合也以大小、多少来分.
例如他断言:全体实数比全体有理数"多"。这是数学向无限王国挺进的重要里程碑,也是实变函数论的出发点.
实变函数论建立在实数理论和集合论的基础之上,对于实数的性质,我们假定读者已经学过,所以本书只是介绍集合论方面的基本知识。
集合是数学中所谓原始概念之一,不能用别的概念加以定义.
就目前来说,我们只要求掌握以下朴素的说法:
“在一定范围内的个体事物的全体,当将它们看作一个整体时,我们把这个整体称为一个集合,其中每个个体事物叫做该集合的元素.”
顺便说明一下,
- 一个集合的各个元素必须是彼此互异的;
- 哪些事物是给定集合的元素必须是明确的.
下面举出几个集合的例子.
例1
4,7,8,3四个自然数构成的集合
例2
全体自然数
例3
0与1之间的实数全体
例4
平面上的向量全体
例5
[ 0 , 1 ] [ 0 , 1 ] [0,1] 上的所有实函数全体
例6
A , B , C A , B , C A,B,C 三个字母构成的集合.
"全体高个子"并不构成一个集合.因为一个人究竟算不算"高个子"并没有明确的界限,有时难以判断他是否属于这个集合
一个具体集合 A A A 可以通过列举其元素 a , b , c , ⋯ a , b , c , \cdots a,b,c,⋯ 来定义,可记为
A = { a , b , c , ⋯ } , A = \{ a , b , c , \cdots \} , A={ a,b,c,⋯},
也可以通过该集合中的各元素必须且只需满足的条件 p p p 来定义,并记为