实变函数论2-点集2-1:内点【设E是n维空间ℝⁿ中的一个点集,P₀是ℝⁿ中的一个定点,如果“存在”P₀的某一邻域U(P₀),使U(P₀)⊂E,则称P₀为E的“内点”】

数学分析中,经常要遇到开区间 ( a , b ) ( a , b ) (a,b) 和闭区间 [ a , b ] [ a , b ] [a,b] 这样的点集.在实变函数论中,我们要将它们扩展为更一般的开集和闭集,并由此生成许多重要的集合类.现在我们从原始概念说起.

E E E n n n 维空间 R n \mathbf { R } ^ { n } Rn 中 的一个点集, P 0 P _ { 0 } P0 R n \mathbf { R } ^ { n } Rn 中 的一个定点,我们来研究 P 0 P _ { 0 } P0 E E E 的关系.现在有三种互斥的情形:
第一,在 P 0 P _ { 0 } P0 的附近根本没有 E E E 的 点;
第二, P 0 P _ { 0 } P0 附近全是 E E E 的 点;
第三, P 0 P _ { 0 } P0 附近既有 E E E 的 点,又有不属于 E E E 的 点

针对这些情况我们给出下述定义


定义1

如果存在 P 0 P _ { 0 } P0 的某一邻域 U ( P 0 ) , U \left( P _ { 0 } \right) , U(P0), 使 U ( P 0 ) ⊂ E , U \left( P _ { 0 } \right) \subset E , U(P0)E, 则称 P 0 P _ { 0 } P0 E E E内点

如果 P 0 P _ { 0 } P0 E c E ^ { c } Ec 的 内点(这里余集是对全空间 R n \mathbf { R } ^ { n } Rn 来作的,即 E c = R n \ E , E ^ { c } = \mathbf { R } ^ { n } \backslash E , Ec=Rn\E, 以后仿此), 则称 P 0 P _ { 0 } P0 E E E外点

如果 P 0 P _ { 0 } P0 既 非 E E E 的内点又非 E E E 的 外点,也就是: P 0 P _ { 0 } P0 的任一邻域内既有属于 E E E 的点, 也有不属于 E E E 的 点,则称 P 0 P _ { 0 } P0 E E E 的 界点或边界点

上述三个概念中当然以内点最为重要,因为其他两个概念都是由此派生出来的.

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值