实变函数论3-测度论2-可测集1:L测度【设E为ℝⁿ中的点集,若对任一点集T都有m*T=m*(T∩E)+m*(T∩Eᶜ),则称E是L可测的。这时E的L外测度m*E称为E的L测度,记为mE】

在第1节中,我们在假定满足勒贝格测度公理的集合函数 m m m存在的前提下找到了 m ( E ) m ( E ) m(E) 的 一个上界,即 E E E外测度 m ∗ E . m ^ { * } E . mE.

外测度 m ∗ E m ^ { * } E mE 的一个优点是任何集合都有外测度,但是外测度只具有“次可数可加性”不具有可数可加性.

事实上,在 R n \mathbf { R } ^ { n } Rn 中的确存在互不相交的一列集合 { E i } \left\{ E _ { i } \right\} { Ei} ( 例如用本章第4节中介绍的不可测集来构造),使得

m ∗ ( ⋃ i = 1 ∞ E i ) < ∑ i = 1 ∞ m ∗ E i m ^ { * } \left( \bigcup _ { i = 1 } ^ { \infty } E _ { i } \right) < \sum _ { i = 1 } ^ { \infty } m ^ { * } E _ { i } m(i=1Ei)<i=1mEi

这意味着,如果把外测度当作测度看,使得任何集合都有测度,那是办不到的。

这就启发我们能否对外测度 m ∗ m ^ { * } m 的 定义域加以限制,即设法在 R n \mathbf { R } ^ { n } Rn 中 找出某一集合类 M , \mathscr { M } , M, M \mathscr { M } M上能够满足测度公理呢?

这就是本节要研究的问题。

这一限制条件便是下面要介绍的定义.

为了理解该定义的合理性,我们先对 M \mathscr { M } M 作一粗略的考察.

  • 首先, M \mathscr { M } M 对某些集合运算应该封闭,例如对 M \mathscr { M } M中的集合作可数并(当然对有限并也成立,只要添加可数个空集)、作交及作差的运算后仍在 M \mathscr { M } M 中,而且对 M \mathscr { M } M中 一列互不相交的集合 { E i } , \left\{ E _ { i } \right\} , { Ei},
    m ∗ ( ⋃ i = 1 ∞ E i ) = ∑ i = 1 ∞ m ∗ E i ( 1 ) m ^ { * } \left( \bigcup _ { i = 1 } ^ { \infty } E _ { i } \right) = \sum _ { i = 1 } ^ { \infty } m ^ { * } E _ { i } \quad\quad(1) m(i=1Ei)=i=1mEi(1)
  • 其次,由测度公理(3),自然应该要求 M \mathscr { M } M 包含 R n \mathbf { R } ^ { n } Rn 中的所有有限开区间.又由于 R n \mathbf { R } ^ { n } Rn 是一列有限开区间的可列并,所以 M \mathscr { M } M 也应包括 R n . \mathbf { R } ^ { n } . R
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值