泛函分析基础8-有界线性算子和连续线性泛函2-2-4:l¹的共轭空间【l¹的共轭空间为l∞,即:(l¹)′=l∞】

下面作为例子给出空间 l 1 l ^ { 1 } l1 l p l ^ { p } lp共轭空间的一般形式。

例1
l 1 l ^ { 1 } l1 的 共轭空间为 l ∞ , l ^ { \infin } , l, ( l 1 ) ′ = l ∞ . \left( l ^ { 1 } \right) ^ { \prime } = l ^ { \infin } . (l1)=l.

证明
e n = ( δ n 1 , δ n 2 , δ n 3 , ⋯   ) , n = 1 , 2 , ⋯   , e _ { n } = \left( \delta _ { n 1 } , \delta _ { n 2 } , \delta _ { n 3 } , \cdots \right) , n = 1 , 2 , \cdots , en=(δn1,δn2,δn3,),n=1,2,,其中 δ n j \delta _ { n j } δnj j = n j = n j=n 时等于1,当 j ≠ n j \neq n j=n 时等于0,显然 e n ∈ l 1 e _ { n } \in l ^ { 1 } enl1 并且对每个 x = ( ξ 1 , ξ 2 , ξ 3 , ⋯   ) ∈ l 1 , x = \left( \xi _ { 1 } , \xi _ { 2 } , \xi _ { 3 } , \cdots \right) \in l ^ { 1 } , x=(ξ1,ξ2,ξ3,)l1,

x = lim ⁡ n → ∞ ∑ k = 1 n ξ k e k . x = \lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \xi _ { k } e _ { k } . x=nlimk=1nξkek.

f ∈ ( l 1 ) ′ , f \in \left( l ^ { 1 } \right) ^ { \prime } , f(l1), f ( e n ) = η n , n = 1 , 2 , ⋯   , f \left( e _ { n } \right) = \eta _ { n } , n = 1 , 2 , \cdots , f(en)=ηn,n=1,2,,那么由于 f ∈ ( l 1 ) ′ , f \in \left( l ^ { 1 } \right) ^ { \prime } , f(l1), 因而有

f ( x ) = lim ⁡ n → ∞ ∑ k = 1 n ξ k f ( e k ) = ∑ k = 1 ∞ ξ k η k , ( 4 ) f ( x ) = \lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \xi _ { k } f \left( e _ { k } \right) = \sum _ { k = 1 } ^ { \infty } \xi _ { k } \eta _ { k } , \quad\quad(4) f(x)=nlimk=1nξkf(ek)=k=1ξkηk,(4)

又因为 ∥ e k ∥ 1 = 1 , \left\| e _ { k } \right\| _ { 1 } = 1 , ek1=1, 所以对一切正整数 k , k , k,

∣ η k ∣ = ∣ f ( e k ) ∣ ⩽ ∥ f ∥ ∥ e k ∥ 1 = ∥ f ∥ . \left| \eta _ { k } \right| = \left| f \left( e _ { k } \right) \right| \leqslant \| f \| \left\| e _ { k } \right\| _ { 1 } = \| f \| . ηk=f(ek)fek1=f∥.

由此可得

sup ⁡ k ∣ η k ∣ ⩽ ∥ f ∥ , ( 5 ) \sup _ { k } \left| \eta _ { k } \right| \leqslant \| f \| ,\quad\quad(5) ksupηkf,(5)

( η 1 , η 2 , η 3 , ⋯   ) ∈ l ∗ . \left( \eta _ { 1 } , \eta _ { 2 } , \eta _ { 3 } , \cdots \right) \in l ^ { * } . (η1,η2,η3,)l.反之,对每个 b = ( β 1 , β 2 , β 3 , ⋯   ) ∈ l ∞ , b = \left( \beta _ { 1 } , \beta _ { 2 } , \beta _ { 3 } , \cdots \right) \in l ^ { \infty } , b=(β1,β2,β3,)l, l 1 l ^ { 1 } l1 上泛函

g ( x ) = ∑ k = 1 ∞ ξ k β k , x = ( ξ 1 , ξ 2 , ξ 3 , ⋯   ) ∈ l 1 , g ( x ) = \sum _ { k = 1 } ^ { \infty } \xi _ { k } \beta _ { k } , x = \left( \xi _ { 1 } , \xi _ { 2 } , \xi _ { 3 } , \cdots \right) \in l ^ { 1 } , g(x)=k=1ξkβk,x=(ξ1,ξ2,ξ3,)l1,

显然 g g g l 1 l ^ { 1 } l1 上线性泛函,而且 g ( e k ) = β k , k = 1 , 2 , ⋯   , g \left( e _ { k } \right) = \beta _ { k } , k = 1 , 2 , \cdots , g(ek)=βk,k=1,2,, 又因

∣ g ( x ) ∣ = ∣ ∑ k = 1 ∞ ξ k β k ∣ ⩽ ∑ k = 1 ∞ ∣ ξ k ∣ ∣ β k ∣ ⩽ sup ⁡ k ∣ β k ∣ ∑ k = 1 ∞ ∣ ξ k ∣ = sup ⁡ k ∣ β k ∣ ∥ x ∥ 1 , | g ( x ) | = \left| \sum _ { k = 1 } ^ { \infty } \xi _ { k } \beta _ { k } \right| \leqslant \sum _ { k = 1 } ^ { \infty } \left| \xi _ { k } \right| \left| \beta _ { k } \right| \leqslant \sup _ { k } \left| \beta _ { k } \right| \sum _ { k = 1 } ^ { \infty } \left| \xi _ { k } \right| = \sup _ { k } \left| \beta _ { k } \right| \| x \| _ { 1 } , g(x)= k=1ξkβk k=1ξkβkksupβkk=1ξk=ksupβkx1,

因此 g ∈ ( l 1 ) ′ , g \in \left( l ^ { 1 } \right) ^ { \prime } , g(l1), 并且有

∥ g ∥ ⩽ sup ⁡ j ∣ β j ∣ = ∥ b ∥ ∞ . ( 6 ) \| g \| \leqslant \sup _ { j } \left| \beta _ { j } \right| = \| b \| _ { \infty } .\quad\quad(6) gjsupβj=b.(6)

因此(4)式是 l 1 l ^ { 1 } l1 上连续线性泛函的一般形式.作 ( l 1 ) ′ \left( l ^ { 1 } \right) ^ { \prime } (l1) l ∞ l ^ { \infty } l 中映射 T T T如下:

T f = ( f ( e 1 ) , f ( e 2 ) , f ( e 3 ) , ⋯   ) , f ∈ ( l 1 ) ′ , T f = \left( f \left( e _ { 1 } \right) , f \left( e _ { 2 } \right) , f \left( e _ { 3 } \right) , \cdots \right) , f \in \left( l ^ { 1 } \right) ^ { \prime } , Tf=(f(e1),f(e2),f(e3),),f(l1),

显然 T T T 是 线性映射,且由前证明知 T T T 是到上的.由(5)式,

∥ T f ∥ ∞ = sup ⁡ k ∣ f ( e k ) ∣ ⩽ ∥ f ∥ , \| T f \| _ { \infty } = \sup _ { k } \left| f \left( e _ { k } \right) \right| \leqslant \| f \| , Tf=ksupf(ek)f,

又由(4)式,对每个 x = ( ξ 1 , ξ 2 , ξ 3 , ⋯   ) ∈ l 1 , x = \left( \xi _ { 1 } , \xi _ { 2 } , \xi _ { 3 } , \cdots \right) \in l ^ { 1 } , x=(ξ1,ξ2,ξ3,)l1,

f ( x ) = ∑ k = 1 ∞ ξ k f ( e k ) , f ( x ) = \sum _ { k = 1 } ^ { \infty } \xi _ { k } f \left( e _ { k } \right) , f(x)=k=1ξkf(ek),

所以由(6)式,有

∥ f ∥ ⩽ sup ⁡ k ∣ f ( e k ) ∣ = ∥ T f ∥ ∞ , \| f \| \leqslant \sup _ { k } \left| f \left( e _ { k } \right) \right| = \| T f \| _ { ∞ } , fksupf(ek)=Tf,

于是 ∥ f ∥ = ∥ T f ∥ ∗ , \| f \| = \| T f \| _ { * } , f=Tf, T T T ( l 1 ) ′ \left( l ^ { 1 } \right) ^ { \prime } (l1) l ∗ l ^ { * } l上的同构映射,所以 ( l 1 ) ′ = l ∗ . \left( l ^ { 1 } \right) ^ { \prime } = l ^ { * } . (l1)=l.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值