下面作为例子给出空间 l 1 l ^ { 1 } l1 和 l p l ^ { p } lp共轭空间的一般形式。
例1
l
1
l ^ { 1 }
l1 的 共轭空间为
l
∞
,
l ^ { \infin } ,
l∞, 即
(
l
1
)
′
=
l
∞
.
\left( l ^ { 1 } \right) ^ { \prime } = l ^ { \infin } .
(l1)′=l∞.
证明
令
e
n
=
(
δ
n
1
,
δ
n
2
,
δ
n
3
,
⋯
)
,
n
=
1
,
2
,
⋯
,
e _ { n } = \left( \delta _ { n 1 } , \delta _ { n 2 } , \delta _ { n 3 } , \cdots \right) , n = 1 , 2 , \cdots ,
en=(δn1,δn2,δn3,⋯),n=1,2,⋯,其中
δ
n
j
\delta _ { n j }
δnj 当
j
=
n
j = n
j=n 时等于1,当
j
≠
n
j \neq n
j=n 时等于0,显然
e
n
∈
l
1
e _ { n } \in l ^ { 1 }
en∈l1 并且对每个
x
=
(
ξ
1
,
ξ
2
,
ξ
3
,
⋯
)
∈
l
1
,
x = \left( \xi _ { 1 } , \xi _ { 2 } , \xi _ { 3 } , \cdots \right) \in l ^ { 1 } ,
x=(ξ1,ξ2,ξ3,⋯)∈l1,有
x = lim n → ∞ ∑ k = 1 n ξ k e k . x = \lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \xi _ { k } e _ { k } . x=n→∞limk=1∑nξkek.
设 f ∈ ( l 1 ) ′ , f \in \left( l ^ { 1 } \right) ^ { \prime } , f∈(l1)′, 令 f ( e n ) = η n , n = 1 , 2 , ⋯ , f \left( e _ { n } \right) = \eta _ { n } , n = 1 , 2 , \cdots , f(en)=ηn,n=1,2,⋯,那么由于 f ∈ ( l 1 ) ′ , f \in \left( l ^ { 1 } \right) ^ { \prime } , f∈(l1)′, 因而有
f ( x ) = lim n → ∞ ∑ k = 1 n ξ k f ( e k ) = ∑ k = 1 ∞ ξ k η k , ( 4 ) f ( x ) = \lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \xi _ { k } f \left( e _ { k } \right) = \sum _ { k = 1 } ^ { \infty } \xi _ { k } \eta _ { k } , \quad\quad(4) f(x)=n→∞limk=1∑nξkf(ek)=k=1∑∞ξkηk,(4)
又因为 ∥ e k ∥ 1 = 1 , \left\| e _ { k } \right\| _ { 1 } = 1 , ∥ek∥1=1, 所以对一切正整数 k , k , k,有
∣ η k ∣ = ∣ f ( e k ) ∣ ⩽ ∥ f ∥ ∥ e k ∥ 1 = ∥ f ∥ . \left| \eta _ { k } \right| = \left| f \left( e _ { k } \right) \right| \leqslant \| f \| \left\| e _ { k } \right\| _ { 1 } = \| f \| . ∣ηk∣=∣f(ek)∣⩽∥f∥∥ek∥1=∥f∥.
由此可得
sup k ∣ η k ∣ ⩽ ∥ f ∥ , ( 5 ) \sup _ { k } \left| \eta _ { k } \right| \leqslant \| f \| ,\quad\quad(5) ksup∣ηk∣⩽∥f∥,(5)
即 ( η 1 , η 2 , η 3 , ⋯ ) ∈ l ∗ . \left( \eta _ { 1 } , \eta _ { 2 } , \eta _ { 3 } , \cdots \right) \in l ^ { * } . (η1,η2,η3,⋯)∈l∗.反之,对每个 b = ( β 1 , β 2 , β 3 , ⋯ ) ∈ l ∞ , b = \left( \beta _ { 1 } , \beta _ { 2 } , \beta _ { 3 } , \cdots \right) \in l ^ { \infty } , b=(β1,β2,β3,⋯)∈l∞,作 l 1 l ^ { 1 } l1 上泛函
g ( x ) = ∑ k = 1 ∞ ξ k β k , x = ( ξ 1 , ξ 2 , ξ 3 , ⋯ ) ∈ l 1 , g ( x ) = \sum _ { k = 1 } ^ { \infty } \xi _ { k } \beta _ { k } , x = \left( \xi _ { 1 } , \xi _ { 2 } , \xi _ { 3 } , \cdots \right) \in l ^ { 1 } , g(x)=k=1∑∞ξkβk,x=(ξ1,ξ2,ξ3,⋯)∈l1,
显然 g g g 是 l 1 l ^ { 1 } l1 上线性泛函,而且 g ( e k ) = β k , k = 1 , 2 , ⋯ , g \left( e _ { k } \right) = \beta _ { k } , k = 1 , 2 , \cdots , g(ek)=βk,k=1,2,⋯, 又因
∣ g ( x ) ∣ = ∣ ∑ k = 1 ∞ ξ k β k ∣ ⩽ ∑ k = 1 ∞ ∣ ξ k ∣ ∣ β k ∣ ⩽ sup k ∣ β k ∣ ∑ k = 1 ∞ ∣ ξ k ∣ = sup k ∣ β k ∣ ∥ x ∥ 1 , | g ( x ) | = \left| \sum _ { k = 1 } ^ { \infty } \xi _ { k } \beta _ { k } \right| \leqslant \sum _ { k = 1 } ^ { \infty } \left| \xi _ { k } \right| \left| \beta _ { k } \right| \leqslant \sup _ { k } \left| \beta _ { k } \right| \sum _ { k = 1 } ^ { \infty } \left| \xi _ { k } \right| = \sup _ { k } \left| \beta _ { k } \right| \| x \| _ { 1 } , ∣g(x)∣= k=1∑∞ξkβk ⩽k=1∑∞∣ξk∣∣βk∣⩽ksup∣βk∣k=1∑∞∣ξk∣=ksup∣βk∣∥x∥1,
因此 g ∈ ( l 1 ) ′ , g \in \left( l ^ { 1 } \right) ^ { \prime } , g∈(l1)′, 并且有
∥ g ∥ ⩽ sup j ∣ β j ∣ = ∥ b ∥ ∞ . ( 6 ) \| g \| \leqslant \sup _ { j } \left| \beta _ { j } \right| = \| b \| _ { \infty } .\quad\quad(6) ∥g∥⩽jsup∣βj∣=∥b∥∞.(6)
因此(4)式是 l 1 l ^ { 1 } l1 上连续线性泛函的一般形式.作 ( l 1 ) ′ \left( l ^ { 1 } \right) ^ { \prime } (l1)′ 到 l ∞ l ^ { \infty } l∞ 中映射 T T T如下:
T f = ( f ( e 1 ) , f ( e 2 ) , f ( e 3 ) , ⋯ ) , f ∈ ( l 1 ) ′ , T f = \left( f \left( e _ { 1 } \right) , f \left( e _ { 2 } \right) , f \left( e _ { 3 } \right) , \cdots \right) , f \in \left( l ^ { 1 } \right) ^ { \prime } , Tf=(f(e1),f(e2),f(e3),⋯),f∈(l1)′,
显然 T T T 是 线性映射,且由前证明知 T T T 是到上的.由(5)式,
∥ T f ∥ ∞ = sup k ∣ f ( e k ) ∣ ⩽ ∥ f ∥ , \| T f \| _ { \infty } = \sup _ { k } \left| f \left( e _ { k } \right) \right| \leqslant \| f \| , ∥Tf∥∞=ksup∣f(ek)∣⩽∥f∥,
又由(4)式,对每个 x = ( ξ 1 , ξ 2 , ξ 3 , ⋯ ) ∈ l 1 , x = \left( \xi _ { 1 } , \xi _ { 2 } , \xi _ { 3 } , \cdots \right) \in l ^ { 1 } , x=(ξ1,ξ2,ξ3,⋯)∈l1,有
f ( x ) = ∑ k = 1 ∞ ξ k f ( e k ) , f ( x ) = \sum _ { k = 1 } ^ { \infty } \xi _ { k } f \left( e _ { k } \right) , f(x)=k=1∑∞ξkf(ek),
所以由(6)式,有
∥ f ∥ ⩽ sup k ∣ f ( e k ) ∣ = ∥ T f ∥ ∞ , \| f \| \leqslant \sup _ { k } \left| f \left( e _ { k } \right) \right| = \| T f \| _ { ∞ } , ∥f∥⩽ksup∣f(ek)∣=∥Tf∥∞,
于是 ∥ f ∥ = ∥ T f ∥ ∗ , \| f \| = \| T f \| _ { * } , ∥f∥=∥Tf∥∗, 即 T T T 是 ( l 1 ) ′ \left( l ^ { 1 } \right) ^ { \prime } (l1)′ 到 l ∗ l ^ { * } l∗上的同构映射,所以 ( l 1 ) ′ = l ∗ . \left( l ^ { 1 } \right) ^ { \prime } = l ^ { * } . (l1)′=l∗.