泛函分析基础7-2-赋范线性空间6-3:Minkowski/闵科夫斯基不等式【范数不等式】【Young不等式⇒Holder不等式⇒Minkowski不等式】

引理2(闵科夫斯基( Minkowski)不等式)

p ⩾ 1 , f , g ∈ L p [ a , b ] , p \geqslant 1 , f , g \in L ^ { p } [ a , b ] , p1,f,gLp[a,b], 那么 f + g ∈ f + g \in f+g L p [ a , b ] , L ^ { p } [ a , b ] , Lp[a,b], 并且成立不等式

∥ f + g ∥ p ⩽ ∥ f ∥ p + ∥ g ∥ p . ( 10 ) \| f + g \| _ { p } \leqslant \| f \| _ { p } + \| g \| _ { p } .\quad\quad(10) f+gpfp+gp.(10)

证明
p = 1 p = 1 p=1 时,因 ∣ f ( t ) + g ( t ) ∣ ⩽ ∣ f ( t ) ∣ + ∣ g ( t ) ∣ , | f ( t ) + g ( t ) | \leqslant | f ( t ) | + | g ( t ) | , f(t)+g(t)f(t)+g(t),由积分性质可知不等式(10)自然成立.如果 p > 1 , p > 1 , p>1, 1 p + 1 q = 1 , \frac { 1 } { p } + \frac { 1 } { q } = 1 , p1+q1=1, 因 为 f + g ∈ L p [ a , b ] , f + g \in L ^ { p } [ a , b ] , f+gLp[a,b], 所以

∣ f ( t ) + g ( t ) ∣ p q ∈ L 4 [ a , b ] , | f ( t ) + g ( t ) | ^ { \frac { p } { q } } \in L ^ { 4 } [ a , b ] , f(t)+g(t)qpL4[a,b],

由赫尔德不等式,有

∫ a b ∣ f ( t ) ∣ ∣ f ( t ) + g ( t ) ∣ 2 4   d t ⩽ ∥ f ∥ p ( ∫ a b ∣ f ( t ) + g ( t ) ∣ p   d t ) 1 q . \int _ { a } ^ { b } | f ( t ) | | f ( t ) + g ( t ) | ^ { \frac { 2 } { 4 } } \mathrm { ~ d } t \leqslant \| f \| _ { p } \left( \int _ { a } ^ { b } | f ( t ) + g ( t ) | ^ { p } \mathrm { ~ d } t \right) ^ { \frac { 1 } { q } } . abf(t)∣∣f(t)+g(t)42 dtfp(abf(t)+g(t)p dt)q1.

类似对 g g g 也有

∫ a b ∣ g ( t ) ∣ ∣ f ( t ) + g ( t ) ∣ 2 4   d t ⩽ ∥ g ∥ p ( ∫ a b ∣ f ( t ) + g ( t ) ∣ p   d t ) 1 4 . \int _ { a } ^ { b } | g ( t ) | | f ( t ) + g ( t ) | ^ { \frac { 2 } { 4 } } \mathrm { ~ d } t \leqslant \| g \| _ { p } \left( \int _ { a } ^ { b } | f ( t ) + g ( t ) | ^ { p } \mathrm { ~ d } t \right) ^ { \frac { 1 } { 4 } } . abg(t)∣∣f(t)+g(t)42 dtgp(abf(t)+g(t)p dt)41.

因而

∫ a b ∣ f ( t ) + g ( t ) ∣ p   d t = ∫ a b ∣ f ( t ) + g ( t ) ∣ ∣ f ( t ) + g ( t ) ∣ p − 1   d t ⩽ ∫ a b ∣ ⁢ f ⁡ ( t ) ⁢ ∣ ⁢ ∣ ⁢ f ⁡ ( t ) + g ⁡ ( t ) ∣ t d d ⁢ t + ∫ a b ∣ ⁢ g ⁡ ( t ) ⁢ ∣ ⁢ ∣ ⁢ f ⁡ ( t ) + g ⁡ ( t ) ∣ t 2 d ⁢ t ⩽ ( ∥ f ∥ p + ∥ g ∥ p ) ( ∫ a b ∣ f ( t ) + g ( t ) ∣ p   d t ) 1 q ( 11 ) \int _ { a } ^ { b } | f ( t ) + g ( t ) | ^ { p } \mathrm { ~ d } t = \int _ { a } ^ { b } | f ( t ) + g ( t ) | | f ( t ) + g ( t ) | ^ { p - 1 } \mathrm { ~ d } t \\ ⩽\int _{a}^{b}∣⁢f⁡\left(t\right)⁢∣⁢∣⁢f⁡\left(t\right) + g⁡\left(t\right)∣^{\frac{t}{d}d⁢t + \int _{a}^{b}∣⁢g⁡\left(t\right)⁢∣⁢∣⁢f⁡\left(t\right) + g⁡\left(t\right)∣^{\frac{t}{2}}d⁢t} \\ \leqslant \left( \| f \| _ { p } + \| g \| _ { p } \right) \left( \int _ { a } ^ { b } | f ( t ) + g ( t ) | ^ { p } \mathrm { ~ d } t \right) ^ { \frac { 1 } { q } } \quad\quad(11) abf(t)+g(t)p dt=abf(t)+g(t)∣∣f(t)+g(t)p1 dtabf(t)f(t)+g(t)dtdt+abg(t)f(t)+g(t)2tdt(fp+gp)(abf(t)+g(t)p dt)q1(11)

∫ a b ∣ f ( t ) + g ( t ) ∣ p   d t = 0 , \int _ { a } ^ { b } | f ( t ) + g ( t ) | ^ { p } \mathrm { ~ d } t = 0 , abf(t)+g(t)p dt=0, ∥ f + g ∥ p = 0 , \| f + g \| _ { p } = 0 , f+gp=0, (10)式显然成立,若 ∫ a b ∣ f ( t ) + g ( t ) ∣ p   d t ≠ 0 \int _ { a } ^ { b } | f ( t ) + g ( t ) | ^ { p } \mathrm { ~ d } t \neq 0 abf(t)+g(t)p dt=0 ,则在(11)式两边除以

( ∫ a b ∣ f ( t ) + g ( t ) ∣ p   d t ) 1 q , \left( \int _ { a } ^ { b } | f ( t ) + g ( t ) | ^ { p } \mathrm { ~ d } t \right) ^ { \frac { 1 } { q } } , (abf(t)+g(t)p dt)q1,

得到

( ∫ a b ∣ f ( t ) + g ( t ) ∣ p   d t ) 1 − 1 q ⩽ ∥ f ∥ p + ∥ g ∥ p . \left( \int _ { a } ^ { b } | f ( t ) + g ( t ) | ^ { p } \mathrm { ~ d } t \right) ^ { 1 - \frac { 1 } { q } } \leqslant \| f \| _ { p } + \| g \| _ { p } . (abf(t)+g(t)p dt)1q1fp+gp.

1 p + 1 q = 1 , \frac { 1 } { p } + \frac { 1 } { q } = 1 , p1+q1=1, 得到

∥ f + g ∥ p = ( ∫ a b ∣ f ( t ) + g ( t ) ∣ p   d t ) 1 p ⩽ ∥ f ∥ p + ∥ g ∥ p . \| f + g \| _ { p } = \left( \int _ { a } ^ { b } | f ( t ) + g ( t ) | ^ { p } \mathrm { ~ d } t \right) ^ { \frac { 1 } { p } } \leqslant \| f \| _ { p } + \| g \| _ { p } . f+gp=(abf(t)+g(t)p dt)p1fp+gp.

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值