泛函分析基础7-2-赋范线性空间3-2:赋范线性空间-例01【欧氏空间ℝⁿ】

下面举一些今后常用的赋范线性空间的例子。


例1
欧氏空间 R n , \mathbf { R } ^ { n } , Rn, 对每个 x = ( ξ 1 , ξ 2 , ⋯   , ξ n ) ∈ R n , x = \left( \xi _ { 1 } , \xi _ { 2 } , \cdots , \xi _ { n } \right) \in \mathbf { R } ^ { n } , x=(ξ1,ξ2,,ξn)Rn,定义

∥ x ∥ = ∣ ξ 1 ∣ 2 + ∣ ξ 2 ∣ 2 + ⋯ + ∣ ξ n ∣ 2 . ( 3 ) \| x \| = \sqrt { \left| \xi _ { 1 } \right| ^ { 2 } + \left| \xi _ { 2 } \right| ^ { 2 } + \cdots + \left| \xi _ { n } \right| ^ { 2 } } . \quad\quad(3) x=ξ12+ξ22++ξn2 .(3)

如果令 d ( x , y ) = ∥ x − y ∥ = ∣ ξ 1 − η 1 ∣ 2 + ∣ ξ 2 − η 2 ∣ 2 + ⋯ + ∣ ξ n − η n ∣ 2 , y = ( η 1 , η 2 , ⋯   , η n ) ∈ R n d(x,y) = \| x - y \| = \sqrt { \left| \xi _ { 1 } - \eta _ { 1 } \right| ^ { 2 } + \left| \xi _ { 2 } - \eta _ { 2 } \right| ^ { 2 } + \cdots + \left| \xi _ { n } - \eta _ { n } \right| ^ { 2 } } , y = \left( \eta _ { 1 } , \eta _ { 2 } , \cdots , \eta _ { n } \right) \in \mathbf { R } ^ { n } d(x,y)=xy=ξ1η12+ξ2η22++ξnηn2 ,y=(η1,η2,,ηn)Rn

d d d 即为 R n \mathbf { R } ^ { n } Rn中欧几里得距离,且满足(1)中条件 ( a ) ( a ) (a) ( b ) , ( b ) , (b), 由此可知 ∥ ⋅ ∥ \| \cdot \| R n \mathbf { R } ^ { n } Rn 中范数.

又因 R n \mathbf { R } ^ { n } Rn 完备,故 R n \mathbf { R } ^ { n } Rn 按(3)式中范数成巴拿赫空间、

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值