泛函分析基础7-2-赋范线性空间1-线性空间3:spanM(由M张成的线性包)【设M为X的一个非空子集,M中任意有限个向量线性组合全体记为spanM,称为由M张成的线性包】

在许多数学问题和实际问题中,我们遇到的空间不仅要求有极限运算,而且还要求有所谓的加法数乘的代数运算。

定义1

X X X 是一非空集合,在 X X X 中定义了元素的加法运算和实数(或复数)与 X X X中元素的乘法运算,满足下列条件:

  1. 关于加法成为交换群,即对任意 x , y ∈ X , x , y \in X , x,yX, 存在 u ∈ X u \in X uX与之对应,记为 u = x + y , u = x + y , u=x+y,称为 x x x y y y,满足

    1. x + y = y + x ; x + y = y + x ; x+y=y+x;
    2. ( x + y ) + z = x + ( y + z ) ( 任何 x , y , z ∈ X ) ; ( x + y ) + z = x + ( y + z ) ( 任 何 x , y , z \in X ) ; (x+y)+z=x+(y+z)(任何x,y,zX);
    3. X X X 中存在唯一元素 θ , \theta , θ, 使对任何 x ∈ X , x \in X , xX, 成立 x + θ = x , x + \theta = x , x+θ=x, θ \boldsymbol { \theta } θ X X X 中零元素;
    4. X X X 中每个元素 x , x , x, 存在唯一元素 x ′ ∈ X , x ^ { \prime } \in X , xX, 使 x + x ′ = θ , x + x ^ { \prime } = \theta , x+x=θ, x ′ x ^ { \prime } x x x x的负元素,记为 − x ; - x ; x;
  2. 对于 X X X 中每个元素 x ∈ X , x \in X , xX, 及任意实数(或复数) a , a , a, 存在元素 u ∈ X u \in X uX 与之对应,记为 u = a x , u = a x , u=ax, 称为 a a a x x x数积,满足

    1. 1 x = x ; 1 x = x ; 1x=x;
    2. a ( b x ) = ( a b ) x a ( b x ) = ( a b ) x a(bx)=(ab)x 对任意实数(或复数) a a a b b b 成 立;
    3. ( a + b ) x = a x + b x , a ( x + y ) = a x + a y , ( a + b ) x = a x + b x , a ( x + y ) = a x + a y , (a+b)x=ax+bx,a(x+y)=ax+ay,

则称 X X X按上述加法和数乘运算成为线性空间向量空间,其中的元素称为向量.


X X X 是 线性空间, Y Y Y X X X 的 非空子集,如果对任意 x , y ∈ Y , x , y \in Y , x,yY,及 任意数 a , a , a, 都有 x + y ∈ x + y \in x+y Y Y Y a x ∈ Y , a x \in Y , axY, 那 么 Y Y Y X X X 中加法及数乘运算也成为线性空间,称为 X X X子空间

X X X { 0 } \{ 0 \} {0} X X X 的两个子空间,称为平凡的子空间,若 X ≠ Y , X \neq Y , X=Y, 则称 Y Y Y X X X的真子空间

x 1 , x 2 , ⋯   , x m x _ { 1 } , x _ { 2 } , \cdots , x _ { m } x1,x2,,xm 是线性空间 X X X中的向量, α 1 , α 2 , ⋯   , α m \alpha _ { 1 } , \alpha _ { 2 } , \cdots , \alpha _ { m } α1,α2,,αm m m m 个数(若 X X X 为 实线性空间,则 α i , i = 1 , 2 , ⋯   , m \alpha _ { i } , i = 1 , 2 , \cdots , m αi,i=1,2,,m 为实数,若 X X X为复线性空间,则 α i \alpha _ { i } αi 为复数,以下类同,不另作说明),

α 1 x 1 + α 2 x 2 + ⋯ + α m x m \alpha _ { 1 } x _ { 1 } + \alpha _ { 2 } x _ { 2 } + \cdots + \alpha _ { m } x _ { m } α1x1+α2x2++αmxm为向量 x 1 , x 2 , ⋯   , x m x _ { 1 } , x _ { 2 } , \cdots , x _ { m } x1,x2,,xm 的一个线性组合

M M M X X X 的一个非空子集, M M M 中任意有限个向量线性组合全体记为 span ⁡ M \color{red}{\operatorname { s p a n } M} spanM,称为 M M M 张成的线性包

容易证明 span ⁡ M \operatorname { s p a n } M spanM X X X 的线性子空间,并且是 X X X中包含 M M M 的 最小线性子空间,即若 F F F X X X中包含 M M M 的线性子空间,那么必有 F ⊃ span ⁡ M . F \supset \operatorname { s p a n } M . FspanM.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值