实变函数论6-微分与不定积分4-不定积分5:定理3

定理3

f ( x ) f ( x ) f(x) [ a , b ] [ a , b ] [a,b] 上可积,则存在绝对连续函数 F ( x ) F ( x ) F(x) 使 F ′ ( x ) = f ( x ) a . e . F ^ { \prime } ( x ) = f ( x ) a . e . F(x)=f(x)a.e. [ a , b ] [ a , b ] [a,b] (只需取 F ⁢ ( x ) = ∫ a x f ⁡ ( t ) ⁢ d ⁢ t . F⁢\left(x\right) = \int _{a}^{x}f⁡\left(t\right)⁢d⁢t. F(x)=axf(t)dt.

证明
因为 f ( x ) f ( x ) f(x) [ a , b ] [ a , b ] [a,b] 上可积,所以有连续函数 φ ( x ) \varphi ( x ) φ(x)使 ∫ a b ∣ f ( t ) − φ ( t ) ∣ d t < ε 2 , \int _ { a } ^ { b } | f ( t ) - \varphi ( t ) | \mathrm { d } t < \frac { \varepsilon } { 2 } , abf(t)φ(t)dt<2ε,而由数学分析可知,对连续函数 φ ( x ) \varphi ( x ) φ(x) d d x ∫ a x φ ( t ) d t = φ ( x ) , \frac { \mathrm { d } } { \mathrm { d } x } \int _ { a } ^ { x } \varphi ( t ) \mathrm { d } t = \varphi ( x ) , dxdaxφ(t)dt=φ(x),因此

∫ a b ∣ d   d x ∫ a x f ( t ) d t − f ( x ) ∣ d x \int _ { a } ^ { b } \left| \frac { \mathrm { d } } { \mathrm { ~ d } x } \int _ { a } ^ { x } f ( t ) \mathrm { d } t - f ( x ) \right| \mathrm { d } x ab  dxdaxf(t)dtf(x) dx
= ∫ a b ∣ d d x ∫ a x ( f ( t ) − φ ( t ) ) d t + φ ( x ) − f ( x ) ∣ d x = \int _ { a } ^ { b } \left| \frac { \mathrm { d } } { \ma

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值