实变函数论6-微分与不定积分4-不定积分4:定理2

定义2(绝对连续函数)

F ( x ) F ( x ) F(x) [ a , b ] [ a , b ] [a,b]上的有限函数,如果对任意 ε > 0 , \varepsilon > 0 , ε>0, 存在 δ > 0 , \delta > 0 , δ>0, 使对 [ a , b ] [ a , b ] [a,b] 中互不相交的任意有限个开区间
( a i , b i ) , i = 1 , 2 , ⋯   , n , \left( a _ { i } , b _ { i } \right) , i = 1 , 2 , \cdots , n , (ai,bi),i=1,2,,n, 只要 ∑ i = 1 n ( b i − a i ) < δ , \sum _ { i = 1 } ^ { n } \left( b _ { i } - a _ { i } \right) < \delta , i=1n(biai)<δ,就有 ∑ i = 1 n ∣ F ( b i ) − F ( a i ) ∣ < ε , \sum _ { i = 1 } ^ { n } \left| F \left( b _ { i } \right) - F \left( a _ { i } \right) \right| < \varepsilon , i=1nF(bi)F(ai)<ε,则称 F ( x ) F ( x ) F(x) [ a , b ] [ a , b ] [a,b] 上的绝对连续
函数.


定理2

F ( x ) F ( x ) F(x) [ a , b ] [ a , b ] [a,b] 上的绝对连续函数,且 F ′ ( x ) = 0 a . e . F ^ { \prime } ( x ) = 0 a . e . F(x)=0a.e. [ a , b ] , [ a , b ] , [a,b], F ( x ) = F ( x ) = F(x)=常数。

证明
c ∈ [ a , b ] , c \in [ a , b ] , c[a,b], 我们将证明 F ( c ) = F ( a ) . F ( c ) = F ( a ) . F(c)=F(a).

由假设,存在 A ⊂ ( a

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值