实变函数论2-点集2-3-2:边界【设E是ℝⁿ中一个点集,E的全体“边界点”所成的集合,称为E的“边界”,记为∂E】【∂E={x;对任意U(x),U(x)∩E≠∅,U(x)∩Eᶜ≠∅}】

根据上面引入的概念,对于一个给定的点集 E , E , E, 我们可以考虑上述各种点的集合, 其中重要的是下面四种

定义4

E E E R n \mathbf { R } ^ { n } R

以下是一个求2维平面上一个点的多边形边界的C程序: ```c #include <stdio.h> struct Point { int x; int y; }; int orientation(struct Point p1, struct Point p2, struct Point p3) { int val = (p2.y - p1.y) * (p3.x - p2.x) - (p2.x - p1.x) * (p3.y - p2.y); if (val == 0) { return 0; } return (val > 0) ? 1 : 2; } void convexHull(struct Point points[], int n) { if (n < 3) { return; } struct Point hull[n]; int l = 0; for (int i = 0; i < n; i++) { if (points[i].x < points[l].x) { l = i; } } int p = l, q; do { hull[p] = points[p]; q = (p + 1) % n; for (int i = 0; i < n; i++) { if (orientation(points[p], points[i], points[q]) == 2) { q = i; } } p = q; } while (p != l); printf("Convex Hull:\n"); for (int i = 0; i < n; i++) { if (hull[i].x != -1 && hull[i].y != -1) { printf("(%d, %d)\n", hull[i].x, hull[i].y); } } } int main() { struct Point points[] = {{0, 0}, {1, 1}, {2, 2}, {3, 3}, {4, 4}, {0, 4}, {4, 0}}; int n = sizeof(points) / sizeof(points[0]); convexHull(points, n); return 0; } ``` 该程序使用Graham扫描算法来计算点集的凸包(即多边形边界)。这个算法的基本思想是首先找到最左边的点(或者y坐标最小的点),然后按照极角排序所有点,最后依次遍历所有点并构建凸包。orientation()函数用于计算三个点的方向,convexHull()函数用于计算凸包并输出结果。在主函数,我们定义了一个具有7个点的示例点集,并将其传递给convexHull()函数。输出的结果将给出凸包的每个点的坐标。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值