实变函数论2-点集4-1-直线上的开集2:开集构造定理【直线上任一个非空开集可以表示成有限个或可数个互不相交的构成区间的和集】

在本节中我们将讨论直线上(即 R \mathbf { R } R 中)开集与闭集的构造。

在直线上,开区间是开集。

虽然开集一般来说不一定是一个开区间,但容易看出非空开集是一系列开区间的和集.

我们现在来研究直线上的开集的结构.为此先引入构成区间的概念.

定义1

G G G 是直线上的开集.如果开区间 ( α , β ) ⊂ G , ( \alpha , \beta ) \subset G , (α,β)G,而且端点 α , β \alpha , \beta α,β 不属于 G , G , G, 那么称 ( α , β ) ( \alpha , \beta ) (α,β) G G G构成区间

例如,开集 ( 0 , 1 ) ∪ ( 2 , 3 ) ( 0 , 1 ) \cup ( 2 , 3 ) (0,1)(2,3) 的构成区间是 ( 0 , 1 ) ( 0 , 1 ) (0,1) 以及 ( 2 , 3 ) . ( 2 , 3 ) . (2,3).


定理1(开集构造定理)

直线上任一个非空开集可以表示成有限个或可数个互不相交的构成区间的和集.

证明
G G G 是直线上的一个非空开集,分以下几步来论证
(1)
开集 G G G 的任何两个不同的构成区间必不相交.不然的话,设 ( α 1 , β 1 ) , ( α 2 , β 2 ) \left( \alpha _ { 1 } , \beta _ { 1 } \right) , \left( \alpha _ { 2 } , \beta _ { 2 } \right) (α1,β1),(α2,β2) G G G的两个不同的构成区间,但相交这时必有一个区间的端点在另一个区间内,例如 α 1 ∈ ( α 2 , β 2 ) , \alpha _ { 1 } \in \left( \alpha _ { 2 } , \beta _ { 2 } \right) , α1(α2,β2), ( α 2 , β 2 ) ⊂ G , \left( \alpha _ { 2 } , \beta _ { 2 } \right) \subset G , (α2,β2)G, 这和 α 1 ∉ G \alpha _ { 1 } \notin G α1/G 矛盾.因此不同的构成区间不相交.再由第一章 S \mathrm { S } S 4例1,开集 G G G 的 构成区间全体最多只有可数个。

(2)
开集中任何一点必含在一个构成区间中.事实上,任意取 x 0 ∈ G , x _ { 0 } \in G , x0G, A x 0 A _ { x _ { 0 } } Ax

  • 22
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值