实变函数论3-测度论3-可测集类10:设集合G表示为一列开集{Gᵢ}之交集,G=⋂Gᵢ,则称G为Gᵩ型集;设集合F表示为一列开集{Fᵢ}之并集,F=⋃Fᵢ,则称F为Fᵨ型集【Gᵩ、Fᵨ都是博雷尔集】

在前一节中,我们定义了可测集合,并且讨论了可测集合的一些性质,但是在一般常见的集合中有哪些是可测的呢?我们现在来回答这个问题


因为开集都是可测集,因此 B ⊂ L , \mathscr { B } \subset L , BL, 因而有以下定理:

定义6

设集合 G G G 可表示为一列开集 { G i } \left\{ G _ { i } \right\} { Gi} 之交集:

G = ⋂ i = 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值