在前一节中,我们定义了可测集合,并且讨论了可测集合的一些性质,但是在一般常见的集合中有哪些是可测的呢?我们现在来回答这个问题 因为开集都是可测集,因此 B ⊂ L , \mathscr { B } \subset L , B⊂L, 因而有以下定理: 定义6 设集合 G G G 可表示为一列开集 { G i } \left\{ G _ { i } \right\} { Gi} 之交集: G = ⋂ i = 1