实变函数论5-积分论5-黎曼积分和勒贝格积分3:定理2【设f(x)是[a,b]上有界函数,若f(x)在[a,b]上R可积,则f(x)在[a,b]上L可积,且R积分(黎曼积分)=L积分(勒贝格积分)】

定理2

f ( x ) f ( x ) f(x) [ a , b ] [ a , b ] [a,b] 上的一个有界函数,若 f ( x ) f ( x ) f(x) [ a , b ] [ a , b ] [a,b] R R R 可积,则 f ( x ) f ( x ) f(x) [ a , b ] [ a , b ] [a,b] L L L 可积,且

( L ) ∫ [ a , b ] f ( x ) d x = ( R ) ∫ a b f ( x ) d x (L) \int _ { [ a , b ] } f ( x ) \mathrm { d } x = ( R ) \int _ { a } ^ { b } f ( x ) \mathrm { d } x (L)[a,b]f(x)dx=(R)abf(x)dx

证明
由于 f ( x ) f ( x ) f(x) [ a , b ] [ a , b ] [a,b] R R R 可积,由本节定理 1 , f ( x ) 1 , f ( x ) 1,f(x) [ a ,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值