定理2
设 f ( x ) f ( x ) f(x) 是 [ a , b ] [ a , b ] [a,b] 上的一个有界函数,若 f ( x ) f ( x ) f(x) 在 [ a , b ] [ a , b ] [a,b] 上 R R R 可积,则 f ( x ) f ( x ) f(x) 在 [ a , b ] [ a , b ] [a,b] 上 L L L 可积,且
( L ) ∫ [ a , b ] f ( x ) d x = ( R ) ∫ a b f ( x ) d x (L) \int _ { [ a , b ] } f ( x ) \mathrm { d } x = ( R ) \int _ { a } ^ { b } f ( x ) \mathrm { d } x (L)∫[a,b]f(x)dx=(R)∫abf(x)dx
证明
由于 f ( x ) f ( x ) f(x) 在 [ a , b ] [ a , b ] [a,b] 上 R R R 可积,由本节定理 1 , f ( x ) 1 , f ( x ) 1,f(x)在 [ a ,