定理1
设 E ⊂ R n E \subset \mathbf { R } ^ { n } E⊂Rn 为可测集, f ( x ) f ( x ) f(x) 为 E E E上的一个非负可测函数,我们有
- (1)若 m E = 0 , m E = 0 , mE=0, 则 ∫ E f ( x ) d x = 0 ; \int _ { E } f ( x ) \mathrm { d } x = 0 ; ∫Ef(x)dx=0;
- (2)若 ∫ E f ( x ) d x = 0 , \int _ { E } f ( x ) \mathrm { d } x = 0 , ∫Ef(x)dx=0, 则 f ( x ) = 0 a . e . f ( x ) = 0 \quad a . e . f(x)=0a.e. 于 E ; E ; E;
- (3)若 ∫ E f ( x ) d x < ∞ , \int _ { E } f ( x ) \mathrm { d } x < \infty , ∫Ef(x)dx<∞, 则 0 ⩽ f ( x ) < ∞ a . e . 0 \leqslant f ( x ) < \infty \quad a . e . 0⩽f(x)<∞a.e. 于 E ; E ; E;
- (4)设 A A A 和 B B B 为 E E E 的 两个互不相交的可测子集,则
∫ A ∪ B f ( x ) d x = ∫ A f ( x ) d x + ∫ B f ( x ) d x . \int _ { A \cup B } f ( x ) \mathrm { d } x = \int _ { A } f ( x ) \mathrm { d } x + \int _ { B } f ( x ) \mathrm { d } x . ∫A∪Bf(x)dx=∫Af(x)dx+∫Bf(x)dx.
证明
(1)由本节的定义即得
(2)对于任意的正整数 n , n , n, 令
A n = E [ f ⩾ 1 n ]