泛函分析基础7-度量空间和赋范线性空间8-3:依范数收敛【设{xₙ}是X中点列,如果存在x∈X,使‖xₙ−x‖➝0(n➝∞),则称{xₙ}依范数收敛于x,记为:xₙ➝x(n➝∞)或limxₙ=x】

在泛函分析中,特别重要和有用的一类度量空间是赋范线性空间.

在赋范线性空间中的元素可以相加或者数乘,元素之间不仅有距离,而且每个元素有类似于普通向量长度的称为范数的量.

定义1

X X X 是实(或复)的线性空间,如果对每个向量 x ∈ X , x \in X , xX, 有一个确定的实数,记为 ∥ x ∥ \| x \| x 与之对应,并且满足

  1. ∥ x ∥ ⩾ 0 , \| x \| \geqslant 0 , x0, ∥ x ∥ = 0 \| x \| = 0 x=0 等价于 x = 0 ; x = 0 ; x=0;
  2. ∥ α x ∥ = ∣ α ∣ ∥ x ∥ \| \alpha x \| = | \alpha | \| x \| αx=α∣∥x 其中 α \alpha α为任意实(复)数;
  3. ∥ x + y ∥ ⩽ ∥ x ∥ + ∥ y ∥ , x , y ∈ X , \| x + y \| \leqslant \| x \| + \| y \| , x , y \in X , x+yx+y,x,yX,

则称 ∥ x ∥ \| x \| x 为 向量 x x x范数,称 X X X 按 范数 ∥ ⋅ ∥ \| \cdot \| 赋范线性空间

{ x n } \left\{ x _ { n } \right\} {xn} X X X 中 点列,如果存在 x ∈ X , x \in X , xX, 使 ∥ x n − x ∥ → 0 ( n → ∞ ) , \left\| x _ { n } - x \right\| \rightarrow 0 ( n \rightarrow \infty ) , xnx0(n),则称 { x n } \left\{ x _ { n } \right\} {xn} 依范数收敛于 x x x, 记为 x n → x ( n → ∞ ) x _ { n } \rightarrow x ( n \rightarrow \infty ) xnx(n) lim ⁡ n → ∞ x n = x . \underset{n \rightarrow \infty}{\lim} x _ { n } = x . nlimxn=x.

如果令

d ( x , y ) = ∥ x − y ∥ ( x , y ∈ X ) , d ( x , y ) = \| x - y \| \quad ( x , y \in X ) , d(x,y)=xy(x,yX),

容易验证 d d d X X X 上的距离,且 { x n } \left\{ x _ { n } \right\} {xn} 依范数收敛于 x x x 等价于 { x n } \left\{ x _ { n } \right\} {xn} 按 距离 d d d 收 敛于 x . x . x. d d d为由范数 ∥ ⋅ ∥ \| \cdot \| 导出的距离.所以赋范线性空间实际上是一种特殊的度量空间.如果 d d d是由 ∥ ⋅ ∥ \| \cdot \| 导出的距离,那么这种距离和线性运算之间有某种关系,即对任意数 α \alpha α 和向量 x , y ∈ X , x , y \in X , x,yX,

(a) d ( x − y , 0 ) = d ( x , y ) , d ( x - y , 0 ) = d ( x , y ) , d(xy,0)=d(x,y),
(b) d ( α x , 0 ) = ∣ α ∣ d ( x , 0 ) . d ( \alpha x , 0 ) = | \alpha | d ( x , 0 ) . d(αx,0)=αd(x,0). (1)

反之,如果 X X X 是 线性空间, d d d X X X 上 的距离,并且满足条件 ( a ) ( \mathrm { a } ) (a) 和(b),那么一定可以在 X X X 上定义范数 ∥ ⋅ ∥ , \| \cdot \| , , 使 d d d 是由 ∥ ⋅ ∥ \| \cdot \| 所导出的距离.事实上,令 ∥ x ∥ = d ( x , 0 ) , \| x \| = d ( x , 0 ) , x=d(x,0), 由条件 ( a ) , ( b ) , ( \mathrm { a } ) , ( \mathrm { b } ) , (a),(b), 不难证明这样定义的 ∥ ⋅ ∥ \| \cdot \| 是范数,且 d ( x , y ) = ∥ x − y ∥ . d ( x , y ) = \| x - y \| . d(x,y)=xy∥. 条件 ( a ) , ( b ) ( \mathrm { a } ) , ( \mathrm { b } ) (a),(b) 反映了空间的度量结构和线性结构之间具有某种协调性.

我们可以证明 ∥ x ∥ \| x \| x x x x 的连续函数.事实上,对于任意 x , y ∈ X , x , y \in X , x,yX, 由范数条件 2 ∘ 2 ^ { \circ } 2 3 ∘ , 3 ^ { \circ } , 3, 不难证明成立不等式

∣ ∥ y ∥ − ∥ x ∥ ∣ ⩽ ∥ y − x ∥ , ( 2 ) | \| y \| - \| x \| | \leqslant \| y - x \| , \quad\quad(2) ∣∥yx∥∣yx,(2)

所以当 ∥ x n − x ∥ → 0 ( n → ∞ ) \left\| x _ { n } - x \right\| \rightarrow 0 ( n \rightarrow \infty ) xnx0(n)时, ∥ x n ∥ → ∥ x ∥ ( n → ∞ ) . \left\| x _ { n } \right\| \rightarrow \| x \| ( n \rightarrow \infty ) . xnx(n).

完备的赋范线性空间称为巴拿赫空间.下面举一些今后常用的赋范线性空间的例子。

例1
欧氏空间 R n , \mathbf { R } ^ { n } , Rn, 对每个 x = ( ξ 1 , ξ 2 , ⋯   , ξ n ) ∈ R n , x = \left( \xi _ { 1 } , \xi _ { 2 } , \cdots , \xi _ { n } \right) \in \mathbf { R } ^ { n } , x=(ξ1,ξ2,,ξn)Rn,定义

∥ x ∥ = ∣ ξ 1 ∣ 2 + ∣ ξ 2 ∣ 2 + ⋯ + ∣ ξ n ∣ 2 . ( 3 ) \| x \| = \sqrt { \left| \xi _ { 1 } \right| ^ { 2 } + \left| \xi _ { 2 } \right| ^ { 2 } + \cdots + \left| \xi _ { n } \right| ^ { 2 } } . \quad\quad(3) x=ξ12+ξ22++ξn2 .(3)

如果令 d ( x , y ) = ∥ x − y ∥ = ∣ ξ 1 − η 1 ∣ 2 + ∣ ξ 2 − η 2 ∣ 2 + ⋯ + ∣ ξ n − η n ∣ 2 , y = ( η 1 , η 2 , ⋯   , η n ) ∈ R n d(x,y) = \| x - y \| = \sqrt { \left| \xi _ { 1 } - \eta _ { 1 } \right| ^ { 2 } + \left| \xi _ { 2 } - \eta _ { 2 } \right| ^ { 2 } + \cdots + \left| \xi _ { n } - \eta _ { n } \right| ^ { 2 } } , y = \left( \eta _ { 1 } , \eta _ { 2 } , \cdots , \eta _ { n } \right) \in \mathbf { R } ^ { n } d(x,y)=xy=ξ1η12+ξ2η22++ξnηn2 ,y=(η1,η2,,ηn)Rn d d d 即为 R n \mathbf { R } ^ { n } Rn中欧几里得距离,且满足(1)中条件 ( a ) ( a ) (a) ( b ) , ( b ) , (b), 由此可知 ∥ ⋅ ∥ \| \cdot \| R n \mathbf { R } ^ { n } Rn 中范数.又因 R n \mathbf { R } ^ { n } Rn 完备,故 R n \mathbf { R } ^ { n } Rn 按(3)式中范数成巴拿赫空间、

例2
空间 C [ a , b ] , C [ a , b ] , C[a,b], 对每个 x ∈ C [ a , b ] , x \in C [ a , b ] , xC[a,b], 定义

∥ x ∥ = max ⁡ a ⩽ t ⩽ b ∣ x ( t ) ∣ . ( 4 ) \| x \| = \max _ { a \leqslant t \leqslant b } | x ( t ) | . \quad\quad (4) x=atbmaxx(t)∣.(4)

容易证明 C [ a , b ] C [ a , b ] C[a,b] 按(4)式中范数成为巴拿赫空间、

例3
空间 l ∗ , l ^ { * } , l, 对每个 x = ( ξ 1 , ξ 2 , ⋯   ) ∈ l n , x = \left( \xi _ { 1 } , \xi _ { 2 } , \cdots \right) \in l ^ { n } , x=(ξ1,ξ2,)ln,定义

∥ x ∥ = sup ⁡ j ∣ ξ j ∣ . ( 5 ) \| x \| = \sup _ { j } \left| \xi _ { j } \right| .\quad\quad(5) x=jsupξj.(5)

不难验证 l ∗ l ^ { * } l 按(5)式中范数成为巴拿赫空间

下面介绍两个重要的巴拿赫空间、

例4
空间 L p [ a , b ] . L ^ { p } [ a , b ] . Lp[a,b].

f ( t ) f ( t ) f(t) [ a , b ] [ a , b ] [a,b] 上复值可测函数 p > 0 , p > 0 , p>0, 如果 ∣ f ( x ) ∣ p | f ( x ) | ^ { p } f(x)p [ a , b ] [ a , b ] [a,b] L L L 可积函数,则称 f ( t ) f ( t ) f(t) [ a , b ] [ a , b ] [a,b] p p p 方可积函数, [ a , b ] [ a , b ] [a,b] p p p方可积函数全体记为 L p [ a , b ] . L ^ { p } [ a , b ] . Lp[a,b]. p = 1 p = 1 p=1 时, L 1 [ a , b ] L ^ { 1 } [ a , b ] L1[a,b] 即为 [ a , b ] [ a , b ] [a,b] L L L 可积函数全体.在空间 L p [ a , b ] L ^ { p } [ a , b ] Lp[a,b] 中,我们把两个 a . e . a . e . a.e. 相等的函数视为 L p [ a , b ] L ^ { p } [ a , b ] Lp[a,b] 中同一个元素而不加以区别.设 f , g ∈ L p [ a , b ] , f , g \in L ^ { p } [ a , b ] , f,gLp[a,b], 因为

∣ ⁢ f ⁡ ( t ) + g ⁡ ( t ) ∣ p ⩽ ( 2 max ⁡ { ∣ ⁢ f ⁡ ( t ) ⁢ ∣ , ∣ ⁢ g ⁡ ( t ) ⁢ ∣ } ) p ⩽ 2 p ( ∣ ⁢ f ⁡ ( t ) ∣ p + ∣ ⁢ g ⁡ ( t ) ∣ p ) . ∣⁢f⁡\left(t\right) + g⁡\left(t\right)∣^{p}⩽\left(2\max \left\{∣⁢f⁡\left(t\right)⁢∣,∣⁢g⁡\left(t\right)⁢∣\right\}\right)^{p}⩽2^{p}\left(∣⁢f⁡\left(t\right)∣^{p} + ∣⁢g⁡\left(t\right)∣^{p}\right). f(t)+g(t)p(2max{f(t),g(t)})p2p(f(t)p+g(t)p).

所以, ∣ f ( t ) + g ( t ) ∣ p | f ( t ) + g ( t ) | ^ { p } f(t)+g(t)p [ a , b ] [ a , b ] [a,b] L L L可积函数,即 f + g ∈ L p [ a , b ] . f + g \in L ^ { p } [ a , b ] . f+gLp[a,b]. 至于 L p [ a , b ] L ^ { p } [ a , b ] Lp[a,b] 关于数乘运算封闭是显见的.故 L p [ a , b ] L ^ { p } [ a , b ] Lp[a,b]按函数通常的加法及数乘运算成为线性空间对每个 f ∈ L p [ a , b ] , f \in L ^ { p } [ a , b ] , fLp[a,b], 定义

∥ f ∥ p = ( ∫ a b ∣ f ( t ) ∣ p   d t ) 1 p . ( 6 ) \| f \| _ { p } = \left( \int _ { a } ^ { b } | f ( t ) | ^ { p } \mathrm { ~ d } t \right) ^ { \frac { 1 } { p } } .\quad\quad(6) fp=(abf(t)p dt)p1.(6)

我们要证明当 p ⩾ 1 p \geqslant 1 p1 时, L p [ a , b ] L ^ { p } [ a , b ] Lp[a,b] ∥ ⋅ ∥ p \| \cdot \| _ { p } p 成为巴拿赫空间.为此,首先证明几个重要的不等式

引理1(赫尔德( Holder)不等式)

p > 1 , 1 p + 1 q = 1 , f ∈ L p [ a , b ] , g ∈ L q [ a , b ] , p > 1 , \frac { 1 } { p } + \frac { 1 } { q } = 1 , f \in L ^ { p } [ a , b ] , g \in L ^ { q } [ a , b ] , p>1,p1+q1=1,fLp[a,b],gLq[a,b],那么 f ( t ) g ( t ) f ( t ) g ( t ) f(t)g(t) [ a , b ] [ a , b ] [a,b] L L L 可积,并且

∫ a b ∣ f ( t ) g ( t ) ∣ d t ⩽ ∥ f ∥ p ∥ g ∥ q . ( 7 ) \int _ { a } ^ { b } | f ( t ) g ( t ) | \mathrm { d } t \leqslant \| f \| _ { p } \| g \| _ { q } .\quad\quad(7) abf(t)g(t)dtfpgq.(7)

证明
首先证明当 p > 1 , 1 p + 1 q = 1 p > 1 , \frac { 1 } { p } + \frac { 1 } { q } = 1 p>1,p1+q1=1时,对任意正数 A A A B , B , B,

A 1 r B 1 q ⩽ A p + B q . ( 8 ) A ^ { \frac { 1 } { r } } B ^ { \frac { 1 } { q } } \leqslant \frac { A } { p } + \frac { B } { q } . \quad\quad(8) Ar1Bq1pA+qB.(8)

事实上,作辅助函数 φ ( t ) = t α − α t ( 0 < t < ∞ ) , 0 < α < 1 , \varphi ( t ) = t ^ { \alpha } - \alpha t ( 0 < t < \infty ) , 0 < \alpha < 1 , φ(t)=tααt(0<t<),0<α<1, φ ′ ( t ) = α [ t α − 1 − 1 ] , \varphi ^ { \prime } ( t ) = \alpha \left[ t ^ { \alpha - 1 } - 1 \right] , φ(t)=α[tα11],所以在 ( 0 , 1 ) ( 0 , 1 ) (0,1)上, φ ′ ( t ) > 0 , \varphi ^ { \prime } ( t ) > 0 , φ(t)>0, ( 1 , ∞ ) ( 1 , \infty ) (1,) φ ′ ( t ) < 0 , \varphi ^ { \prime } ( t ) < 0 , φ(t)<0, 因而 φ ( 1 ) \varphi ( 1 ) φ(1) 是函数 φ ( t ) \varphi ( t ) φ(t) ( 0 , ∞ ) ( 0 , \infty ) (0,) 上的最大值,即

φ ( t ) ⩽ φ ( 1 ) = 1 − α , t ∈ ( 0 , ∞ ) . \varphi ( t ) \leqslant \varphi ( 1 ) = 1 - \alpha , \quad t \in ( 0 , \infty ) . φ(t)φ(1)=1α,t(0,).

由此可得

t α ⩽ α t + ( 1 − α ) , t ∈ ( 0 , ∞ ) . t ^ { \alpha } \leqslant \alpha t + ( 1 - \alpha ) , \quad t \in ( 0 , \infty ) . tααt+(1α),t(0,).

t = A B , t = \frac { A } { B } , t=BA, 代入上面不等式,那么

A a B a ⩽ α A B + ( 1 − α ) . \frac { A ^ { a } } { B ^ { a } } \leqslant \alpha \frac { A } { B } + ( 1 - \alpha ) . BaAaαBA+(1α).

两边乘 B , B , B, 得到

A α B α − 1 ⩽ α A + ( 1 − α ) B . \frac { A ^ { \alpha } } { B ^ { \alpha - 1 } } \leqslant \alpha A + ( 1 - \alpha ) B . Bα1AααA+(1α)B.

α = 1 p , \alpha = \frac { 1 } { p } , α=p1, 1 − α = 1 q , 1 - \alpha = \frac { 1 } { q } , 1α=q1,于是上式成为

A 1 p ⋅ B 1 q ⩽ A p + B q . A ^ { \frac { 1 } { p } } \cdot B ^ { \frac { 1 } { q } } \leqslant \frac { A } { p } + \frac { B } { q } . Ap1Bq1pA+qB.

如果 ∥ f ∥ p = 0 \| f \| _ { p } = 0 fp=0 (或 ∥⁢ g ⁡ ∥ q = 0 , ∥⁢g⁡∥_{q} = 0, ∥⁢gq=0, f ( t ) = 0 a . e . f ( t ) = 0 a . e . f(t)=0a.e. [ a , b ] [ a , b ] [a,b] (或 g ( t ) = 0 a . e . g ( t ) = 0 a . e . g(t)=0a.e. [ a , b ] ) , [ a , b ] ) , [a,b]),这时,不等式(7)自然成立,所以不妨设 ∥ f ∥ p > 0 , ∥ g ∥ q > 0. \| f \| _ { p } > 0 , \| g \| _ { q } > 0 . fp>0,gq>0. 作函数

φ ( t ) = ∣ f ( t ) ∣ ∥ f ∥ p , ψ ( t ) = ∣ g ( t ) ∣ ∥ g ∥ q . \varphi ( t ) = \frac { | f ( t ) | } { \| f \| _ { p } } , \psi ( t ) = \frac { | g ( t ) | } { \| g \| _ { q } } . φ(t)=fpf(t),ψ(t)=gqg(t).

A = ∣ φ ( t ) ∣ p , B = ∣ ψ ( t ) ∣ q , A = | \varphi ( t ) | ^ { p } , B = | \psi ( t ) | ^ { q } , A=φ(t)p,B=ψ(t)q,代人不等式(8),得到

∣ φ ( t ) ψ ( t ) ∣ ⩽ ∣ φ ( t ) ∣ p p + ∣ ψ ( t ) ∣ q q . ( 9 ) | \varphi ( t ) \psi ( t ) | \leqslant \frac { | \varphi ( t ) | ^ { p } } { p } + \frac { | \psi ( t ) | ^ { q } } { q } .\quad\quad(9) φ(t)ψ(t)pφ(t)p+qψ(t)q.(9)

由(9)式立即可知 φ ( t ) ψ ( t ) \varphi ( t ) \psi ( t ) φ(t)ψ(t) [ a , b ] [ a , b ] [a,b] L L L可积,由此可知 f ( t ) g ( t ) f ( t ) g ( t ) f(t)g(t) L L L 可积,对(9)式的两边积分,得到

∫ a b ∣ φ ( t ) ψ ( t ) ∣ d t ⩽ ∫ a b ∣ φ ( t ) ∣ p p   d t + ∫ a b ∣ ψ ( t ) ∣ q q   d t . \int _ { a } ^ { b } | \varphi ( t ) \psi ( t ) | \mathrm { d } t \leqslant \int _ { a } ^ { b } \frac { | \varphi ( t ) | ^ { p } } { p } \mathrm { ~ d } t + \int _ { a } ^ { b } \frac { | \psi ( t ) | ^ { q } } { q } \mathrm { ~ d } t . abφ(t)ψ(t)dtabpφ(t)p dt+abqψ(t)q dt.

因此

∫ a b ∣ f ( t ) g ( t ) ∣ d t ⩽ ∥ f ∥ p ∥ g ∥ q . \int _ { a } ^ { b } | f ( t ) g ( t ) | \mathrm { d } t \leqslant \| f \| _ { p } \| g \| _ { q } . abf(t)g(t)dtfpgq.

引理2(闵科夫斯基( Minkowski)不等式)

p ⩾ 1 , f , g ∈ L p [ a , b ] , p \geqslant 1 , f , g \in L ^ { p } [ a , b ] , p1,f,gLp[a,b], 那么 f + g ∈ f + g \in f+g L p [ a , b ] , L ^ { p } [ a , b ] , Lp[a,b], 并且成立不等式

∥ f + g ∥ p ⩽ ∥ f ∥ p + ∥ g ∥ p . ( 10 ) \| f + g \| _ { p } \leqslant \| f \| _ { p } + \| g \| _ { p } .\quad\quad(10) f+gpfp+gp.(10)

证明
p = 1 p = 1 p=1 时,因 ∣ f ( t ) + g ( t ) ∣ ⩽ ∣ f ( t ) ∣ + ∣ g ( t ) ∣ , | f ( t ) + g ( t ) | \leqslant | f ( t ) | + | g ( t ) | , f(t)+g(t)f(t)+g(t),由积分性质可知不等式(10)自然成立.如果 p > 1 , p > 1 , p>1, 1 p + 1 q = 1 , \frac { 1 } { p } + \frac { 1 } { q } = 1 , p1+q1=1, 因 为 f + g ∈ L p [ a , b ] , f + g \in L ^ { p } [ a , b ] , f+gLp[a,b], 所以

∣ f ( t ) + g ( t ) ∣ p q ∈ L 4 [ a , b ] , | f ( t ) + g ( t ) | ^ { \frac { p } { q } } \in L ^ { 4 } [ a , b ] , f(t)+g(t)qpL4[a,b],

由赫尔德不等式,有

∫ a b ∣ f ( t ) ∣ ∣ f ( t ) + g ( t ) ∣ 2 4   d t ⩽ ∥ f ∥ p ( ∫ a b ∣ f ( t ) + g ( t ) ∣ p   d t ) 1 q . \int _ { a } ^ { b } | f ( t ) | | f ( t ) + g ( t ) | ^ { \frac { 2 } { 4 } } \mathrm { ~ d } t \leqslant \| f \| _ { p } \left( \int _ { a } ^ { b } | f ( t ) + g ( t ) | ^ { p } \mathrm { ~ d } t \right) ^ { \frac { 1 } { q } } . abf(t)∣∣f(t)+g(t)42 dtfp(abf(t)+g(t)p dt)q1.

类似对 g g g 也有

∫ a b ∣ g ( t ) ∣ ∣ f ( t ) + g ( t ) ∣ 2 4   d t ⩽ ∥ g ∥ p ( ∫ a b ∣ f ( t ) + g ( t ) ∣ p   d t ) 1 4 . \int _ { a } ^ { b } | g ( t ) | | f ( t ) + g ( t ) | ^ { \frac { 2 } { 4 } } \mathrm { ~ d } t \leqslant \| g \| _ { p } \left( \int _ { a } ^ { b } | f ( t ) + g ( t ) | ^ { p } \mathrm { ~ d } t \right) ^ { \frac { 1 } { 4 } } . abg(t)∣∣f(t)+g(t)42 dtgp(abf(t)+g(t)p dt)41.

因而

∫ a b ∣ f ( t ) + g ( t ) ∣ p   d t = ∫ a b ∣ f ( t ) + g ( t ) ∣ ∣ f ( t ) + g ( t ) ∣ p − 1   d t ⩽ ∫ a b ∣ ⁢ f ⁡ ( t ) ⁢ ∣ ⁢ ∣ ⁢ f ⁡ ( t ) + g ⁡ ( t ) ∣ t d d ⁢ t + ∫ a b ∣ ⁢ g ⁡ ( t ) ⁢ ∣ ⁢ ∣ ⁢ f ⁡ ( t ) + g ⁡ ( t ) ∣ t 2 d ⁢ t ⩽ ( ∥ f ∥ p + ∥ g ∥ p ) ( ∫ a b ∣ f ( t ) + g ( t ) ∣ p   d t ) 1 q ( 11 ) \int _ { a } ^ { b } | f ( t ) + g ( t ) | ^ { p } \mathrm { ~ d } t = \int _ { a } ^ { b } | f ( t ) + g ( t ) | | f ( t ) + g ( t ) | ^ { p - 1 } \mathrm { ~ d } t \\ ⩽\int _{a}^{b}∣⁢f⁡\left(t\right)⁢∣⁢∣⁢f⁡\left(t\right) + g⁡\left(t\right)∣^{\frac{t}{d}d⁢t + \int _{a}^{b}∣⁢g⁡\left(t\right)⁢∣⁢∣⁢f⁡\left(t\right) + g⁡\left(t\right)∣^{\frac{t}{2}}d⁢t} \\ \leqslant \left( \| f \| _ { p } + \| g \| _ { p } \right) \left( \int _ { a } ^ { b } | f ( t ) + g ( t ) | ^ { p } \mathrm { ~ d } t \right) ^ { \frac { 1 } { q } } \quad\quad(11) abf(t)+g(t)p dt=abf(t)+g(t)∣∣f(t)+g(t)p1 dtabf(t)f(t)+g(t)dtdt+abg(t)f(t)+g(t)2tdt(fp+gp)(abf(t)+g(t)p dt)q1(11)

∫ a b ∣ f ( t ) + g ( t ) ∣ p   d t = 0 , \int _ { a } ^ { b } | f ( t ) + g ( t ) | ^ { p } \mathrm { ~ d } t = 0 , abf(t)+g(t)p dt=0, ∥ f + g ∥ p = 0 , \| f + g \| _ { p } = 0 , f+gp=0, (10)式显然成立,若 ∫ a b ∣ f ( t ) + g ( t ) ∣ p   d t ≠ 0 \int _ { a } ^ { b } | f ( t ) + g ( t ) | ^ { p } \mathrm { ~ d } t \neq 0 abf(t)+g(t)p dt=0 ,则在(11)式两边除以

( ∫ a b ∣ f ( t ) + g ( t ) ∣ p   d t ) 1 q , \left( \int _ { a } ^ { b } | f ( t ) + g ( t ) | ^ { p } \mathrm { ~ d } t \right) ^ { \frac { 1 } { q } } , (abf(t)+g(t)p dt)q1,

得到

( ∫ a b ∣ f ( t ) + g ( t ) ∣ p   d t ) 1 − 1 q ⩽ ∥ f ∥ p + ∥ g ∥ p . \left( \int _ { a } ^ { b } | f ( t ) + g ( t ) | ^ { p } \mathrm { ~ d } t \right) ^ { 1 - \frac { 1 } { q } } \leqslant \| f \| _ { p } + \| g \| _ { p } . (abf(t)+g(t)p dt)1q1fp+gp.

1 p + 1 q = 1 , \frac { 1 } { p } + \frac { 1 } { q } = 1 , p1+q1=1, 得到

∥ f + g ∥ p = ( ∫ a b ∣ f ( t ) + g ( t ) ∣ p   d t ) 1 p ⩽ ∥ f ∥ p + ∥ g ∥ p . \| f + g \| _ { p } = \left( \int _ { a } ^ { b } | f ( t ) + g ( t ) | ^ { p } \mathrm { ~ d } t \right) ^ { \frac { 1 } { p } } \leqslant \| f \| _ { p } + \| g \| _ { p } . f+gp=(abf(t)+g(t)p dt)p1fp+gp.

定理1

p ⩾ 1 p \geqslant 1 p1 时, L p [ a , b ] L ^ { p } [ a , b ] Lp[a,b] 按(6)式中范数 ∥ ⋅ ∥ , \| \cdot \| , , 成为赋范线性空间

证明
∥ ⋅ ∥ p \| \cdot \| _ { p } p 满足范数条件 1 ∘ 1 ^ { \circ } 1 2 ∘ 2 ^ { \circ } 2 是 显然的.又由闵科夫斯基不等式,当 p ⩾ 1 p \geqslant 1 p1时,对任意 f , g ∈ L p [ a , b ] f , g \in L ^ { p } [ a , b ] f,gLp[a,b] ∥ f + g ∥ p ⩽ ∥ f ∥ p + ∥ g ∥ p , \| f + g \| _ { p } \leqslant \| f \| _ { p } + \| g \| _ { p } , f+gpfp+gp, 所以 L p [ a , b ] L ^ { p } [ a , b ] Lp[a,b] ∥ ⋅ ∥ p \| \cdot \| _ { p } p 成赋范线性空间.

定理2

L p [ a , b ] ( p ⩾ 1 ) L ^ { p } [ a , b ] ( p \geqslant 1 ) Lp[a,b](p1) 是巴拿赫空间.

证明
{ f n } \left\{ f _ { n } \right\} {fn} L p [ a , b ] L ^ { p } [ a , b ] Lp[a,b] 中柯西点列,由柯西点列的定义,存在正整数 m k , m _ { k } , mk, 使当 n , n , n, m ⩾ m k m \geqslant m _ { k } mmk 时,

∥ f n − f m ∥ p < 1 2 k , k = 1 , 2 , ⋯ \left\| f _ { n } - f _ { m } \right\| _ { p } < \frac { 1 } { 2 ^ { k } } , k = 1 , 2 , \cdots fnfmp<2k1,k=1,2,

n k ⩾ m k , n _ { k } \geqslant m _ { k } , nkmk, 且使 n 1 < n 2 < ⋯ < n k < ⋯   , n _ { 1 } < n _ { 2 } < \cdots < n _ { k } < \cdots , n1<n2<<nk<,

∥ f n k + 1 − f n k ∥ p < 1 2 k , k = 1 , 2 , ⋯   . \left\| f _ { n _ { k + 1 } } - f _ { n _ { k } } \right\| _ { p } < \frac { 1 } { 2 ^ { k } } , k = 1 , 2 , \cdots . fnk+1fnkp<2k1,k=1,2,.

因此

∑ k = 1 ∞ ∥ f n k + 1 − f n k ∥ p ⩽ ∑ k = 1 ∞ 1 2 k < ∞ . ( 12 ) \sum _ { k = 1 } ^ { \infty } \left\| f _ { n _ { k + 1 } } - f _ { n _ { k } } \right\| _ { p } \leqslant \sum _ { k = 1 } ^ { \infty } \frac { 1 } { 2 ^ { k } } < \infty .\quad\quad(12) k=1fnk+1fnkpk=12k1<∞.(12)

但是因为常数 1 ∈ L ∗ [ a , b ] , 1 \in L ^ { * } [ a , b ] , 1L[a,b], 由赫尔德不等式,有

∫ a b ∣ f n k + 1 ( t ) − f n k ( t ) ∣ d t ⩽ ∥ f n k + 1 − f n k ∥ p ( b − a ) 1 q . \int _ { a } ^ { b } \left| f _ { n _ { k + 1 } } ( t ) - f _ { n _ { k } } ( t ) \right| \mathrm { d } t \leqslant \left\| f _ { n _ { k + 1 } } - f _ { n _ { k } } \right\| _ { p } ( b - a ) ^ { \frac { 1 } { q } } . abfnk+1(t)fnk(t)dtfnk+1fnkp(ba)q1.

所以级数

∑ k = 1 ∞ ∫ a b ∣ f n k + 1 ( t ) − f n k ( t ) ∣ d t ( 13 ) \sum _ { k = 1 } ^ { \infty } \int _ { a } ^ { b } \left| f _ { n _ { k + 1 } } ( t ) - f _ { n _ { k } } ( t ) \right| \mathrm { d } t \quad\quad(13) k=1abfnk+1(t)fnk(t)dt(13)

收敛,由级数形式的莱维定理,级数 ∑ k = 1 ∞ ∣ f n k + 1 ( t ) − f n k ( t ) ∣ \sum _ { k = 1 } ^ { \infty } \left| f _ { n _ { k + 1 } } ( t ) - f _ { n _ { k } } ( t ) \right| k=1fnk+1(t)fnk(t) [ a , b ] [ a , b ] [a,b] 上几乎处处收敛.因此,函数列

f n k ( t ) = f n 1 ( t ) + ∑ j = 1 k − 1 ( f n n + 1 ( t ) − f n j ( t ) ) ( k = 1 , 2 , 3 , ⋯   ) f _ { n _ { k } } ( t ) = f _ { n _ { 1 } } ( t ) + \sum _ { j = 1 } ^ { k - 1 } \left( f _ { n _ { n + 1 } } ( t ) - f _ { n _ { j } } ( t ) \right) ( k = 1 , 2 , 3 , \cdots ) fnk(t)=fn1(t)+j=1k1(fnn+1(t)fnj(t))(k=1,2,3,)

[ a , b ] [ a , b ] [a,b] 上几乎处处收敛于一可测函数 f ( t ) . f ( t ) . f(t). 下证 f ∈ L p [ a , b ] . f \in L ^ { p } [ a , b ] . fLp[a,b]. 因为 { f n } \left\{ f _ { n } \right\} {fn} L p [ a , b ] L ^ { p } [ a , b ] Lp[a,b] 中柯西点列,对于任意正数 ε > 0 , \varepsilon > 0 , ε>0, 存在 N , N , N, 使当 n , m ⩾ N n , m \geqslant N n,mN 时, ∥ f n − f m ∥ p < ε , \left\| f _ { n } - f _ { m } \right\| _ { p } < \varepsilon , fnfmp<ε,
取足够大的 k 0 , k _ { 0 } , k0,使 n k 0 > N , n _ { k _ { 0 } } > N , nk0>N, 于是当 k ⩾ k 0 , n ⩾ N k \geqslant k _ { 0 } , n \geqslant N kk0,nN 时,就有

∫ a b ∣ f n ( t ) − f n k ( t ) ∣ p   d t = ∥ f n − f n k ∥ p p < ε p . \int _ { a } ^ { b } \left| f _ { n } ( t ) - f _ { n _ { k } } ( t ) \right| ^ { p } \mathrm { ~ d } t = \left\| f _ { n } - f _ { n _ { k } } \right\| p ^ { p } < \varepsilon ^ { p } . abfn(t)fnk(t)p dt=fnfnkpp<εp.

又因当 k → ∞ k \rightarrow \infty k 时函数列 ∣ f n ( t ) − f n k ( t ) ∣ p → ∣ f n ( t ) − f ( t ) ∣ p a . e . \left| f _ { n } ( t ) - f _ { n _ { k } } ( t ) \right| ^ { p } \rightarrow \left| f _ { n } ( t ) - f ( t ) \right| ^ { p } a . e . fn(t)fnk(t)pfn(t)f(t)pa.e. [ a , b ] , [ a , b ] , [a,b], 由法图定理得到 ∣ f n ( t ) − f ( t ) ∣ ′ \left| f _ { n } ( t ) - f ( t ) \right| ^ { \prime } fn(t)f(t) L L L可积函数,并且有

∫ a b ∣ f n ( t ) − f ( t ) ∣ p   d t ⩽ lim ⁡ ‾ k → ∞ ∫ a b ∣ f n ( t ) − f n k ( t ) ∣ p   d t ⩽ ε p , \int _ { a } ^ { b } \left| f _ { n } ( t ) - f ( t ) \right| ^ { p } \mathrm { ~ d } t \leqslant \underset{k \to\infty}{\underline{\operatorname* {l i m}}} \int _ { a } ^ { b } \left| f _ { n } ( t ) - f _ { n _ { k } } ( t ) \right| ^ { p } \mathrm { ~ d } t \leqslant \varepsilon ^ { p } , abfn(t)f(t)p dtklimabfn(t)fnk(t)p dtεp,

这说明 f − f n ∈ L p [ a , b ] , f - f _ { n } \in L ^ { p } [ a , b ] , ffnLp[a,b], 且当 n ⩾ N n \geqslant N nN

∥ f n − f ∥ p ⩽ ε . ( 14 ) \left\| f _ { n } - f \right\| _ { p } \leqslant \varepsilon .\quad\quad(14) fnfpε.(14)

又因 f n ∈ L p [ a , b ] , f _ { n } \in L ^ { p } [ a , b ] , fnLp[a,b], f = [ f − f n ] + f n , f = \left[ f - f _ { n } \right] + f _ { n } , f=[ffn]+fn, 由于 L p [ a , b ] L ^ { p } [ a , b ] Lp[a,b] 是线性空间,所以 f ∈ L p [ a , b ] , f \in L ^ { p } [ a , b ] , fLp[a,b], 由(14) , f n → f , f _ { n } \rightarrow f , fnf, 这就证明了 L p [ a , b ] L ^ { p } [ a , b ] Lp[a,b]是巴拿赫空间.

C [ a , b ] C [ a , b ] C[a,b] 中每个函数 f ( t ) , f ( t ) , f(t), 定义

∥ f ∥ p = ( ∫ a b ∣ f ( t ) ∣ p   d t ) 1 p ( p ⩾ 1 ) , \| f \| _ { p } = \left( \int _ { a } ^ { b } | f ( t ) | ^ { p } \mathrm { ~ d } t \right) ^ { \frac { 1 } { p } } ( p \geqslant 1 ) , fp=(abf(t)p dt)p1(p1),

那么 C [ a , b ] C [ a , b ] C[a,b] ∥ ⋅ ∥ p \| \cdot \| _ { p } p 成为 L p [ a , b ] L ^ { p } [ a , b ] Lp[a,b]的赋范线性子空间,类似于 S \mathrm { S } S 4例5的证明,可以证明 C [ a , b ] C [ a , b ] C[a,b] 按范数 ∥ ⋅ ∥ p \| \cdot \| _ { p } p不完备,但是可以证明它的完备化空间是 L p [ a , b ] . L ^ { p } [ a , b ] . Lp[a,b]. 从这个观点看, L L L 可积函数类只不过是 R R R 可 积函数类的完备化拓广

例5
空间 l p . l ^ { p } . lp.

L p [ a , b ] L ^ { p } [ a , b ] Lp[a,b] 空间一样,在 l p l ^ { p } lp空间中也有类似的赫尔德不等式和闵科夫斯基不等式:

∑ i = 1 ∞ ∣ ξ i η i ∣ ⩽ ( ∑ i = 1 ∞ ∣ ξ i ∣ p ) 1 p ( ∑ i = 1 ∞ ∣ η i ∣ q ) 1 q ( 赫尔德不等式 ) , \sum _ { i = 1 } ^ { \infty } \left| \xi _ { i } \eta _ { i } \right| \leqslant \left( \sum _ { i = 1 } ^ { \infty } \left| \xi _ { i } \right| ^ { p } \right) ^ { \frac { 1 } { p } } \left( \sum _ { i = 1 } ^ { \infty } \left| \eta _ { i } \right| ^ { q } \right) ^ { \frac { 1 } { q } } \left( 赫尔德不等式 \right) , i=1ξiηi(i=1ξip)p1(i=1ηiq)q1(赫尔德不等式),

其中 p > 1 , 1 p + 1 q = 1 , ( ξ 1 , ξ 2 , ξ 3 , ⋯   ) ∈ l p , ( η 1 , η 2 , η 3 , ⋯   ) ∈ l n ; p > 1 , \frac { 1 } { p } + \frac { 1 } { q } = 1 , \left( \xi _ { 1 } , \xi _ { 2 } , \xi _ { 3 } , \cdots \right) \in l ^ { p } , \left( \eta _ { 1 } , \eta _ { 2 } , \eta _ { 3 } , \cdots \right) \in l ^ { n } ; p>1,p1+q1=1,(ξ1,ξ2,ξ3,)lp,(η1,η2,η3,)ln;

∥ x + y ∥ p ⩽ ∥ x ∥ p + ∥ y ∥ p ( 闪种大新班不等式 ) , \| x + y \| _ { p } \leqslant \| x \| _ { p } + \| y \| _ { p } ( 闪 种 大 新 班 不 等 式 ) , x+ypxp+yp(闪种大新班不等式),

其中 p ⩾ 1 , x = ( ξ 1 , ξ 2 , ⋯   ) , y = ( η 1 , η 2 , ⋯   ) ∈ l p , ∥ x ∥ p = ( ∑ i = 1 ∞ ∣ ξ i ∣ p ) 1 p , ∥ y ∥ p = ( ∑ i = 1 ∞ ∣ η i ∣ p ) 1 p p\geqslant 1 , x = \left( \xi _ { 1 } , \xi _ { 2 } , \cdots \right) , y = \left( \eta _ { 1 } , \eta _ { 2 } , \cdots \right) \in l ^ { p } , \| x \| _ { p } = \left( \sum _ { i = 1 } ^ { \infty } \left| \xi _ { i } \right| ^ { p } \right) ^ { \frac { 1 } { p } } , \| y \| _ { p } = \left( \sum _ { i = 1 } ^ { \infty } \left| \eta _ { i } \right| ^ { p } \right) ^ { \frac { 1 } { p } } p1,x=(ξ1,ξ2,),y=(η1,η2,)lp,xp=(i=1ξip)p1,yp=(i=1ηip)p1。由此可知 l p l ^ { p } lp 按范数 ∥ ⋅ ∥ p \| \cdot \| _ { p } p成赋范线性空间,并且不难证明 l p l ^ { p } lp 完备这些留给读者自己证明

最后,让我们考察有限维赋范线性空间的性质

定理3

X X X n n n 维赋范线性空间, { e 1 , e 2 , ⋯   , e n } \left\{ e _ { 1 } , e _ { 2 } , \cdots , e _ { n } \right\} {e1,e2,,en} X X X的一组基,则存在常数 M M M M ′ , M ^ { \prime } , M, 使得对一切

x = ∑ k = 1 n ξ k e k x = \sum _ { k = 1 } ^ { n } \xi _ { k } e _ { k } x=k=1nξkek

成立

M ∥ x ∥ ⩽ ( ∑ k = 1 n ∣ ξ k ∣ 2 ) 1 2 ⩽ M ′ ∥ x ∥ . M \| x \| \leqslant \left( \sum _ { k = 1 } ^ { n } \left| \xi _ { k } \right| ^ { 2 } \right) ^ { \frac { 1 } { 2 } } \leqslant M ^ { \prime } \| x \| . Mx(k=1nξk2)21Mx∥.

证明
对任意 x ∈ X , x \in X , xX,

∥ x ∥ = ∥ ∑ k = 1 n ξ k e k ∥ ⩽ ∑ k = 1 n ∥ e k ∥ ∣ ξ k ∣ ⩽ ( ∑ k = 1 n ∥ e k ∥ 2 ) 1 2 ( ∑ k = 1 n ∣ ξ k ∣ 2 ) 1 2 \| x \| = \left\| \sum _ { k = 1 } ^ { n } \xi _ { k } e _ { k } \right\| \leqslant \sum _ { k = 1 } ^ { n } \left\| e _ { k } \right\| \left| \xi _ { k } \right| \\ \leqslant \left( \sum _ { k = 1 } ^ { n } \left\| e _ { k } \right\| ^ { 2 } \right) ^ { \frac { 1 } { 2 } } \left( \sum _ { k = 1 } ^ { n } \left| \xi _ { k } \right| ^ { 2 } \right) ^ { \frac { 1 } { 2 } } x= k=1nξkek k=1nekξk(k=1nek2)21(k=1nξk2)21

m = ( ∑ k = 1 n ∥ e k ∥ 2 ) 1 2 , m = \left( \sum _ { k = 1 } ^ { n } \left\| e _ { k } \right\| ^ { 2 } \right) ^ { \frac { 1 } { 2 } } , m=(k=1nek2)21, 则有 ∥ x ∥ ⩽ m ( ∑ k = 1 n ∣ ξ k ∣ 2 ) − 1 2 . \| x \| \leqslant m \left( \sum _ { k = 1 } ^ { n } \left| \xi _ { k } \right| ^ { 2 } \right) ^ { - \frac { 1 } { 2 } } . xm(k=1nξk2)21.

任取 y = ∑ k = 1 n η k e k ∈ X , y = \sum _ { k = 1 } ^ { n } \eta _ { k } e _ { k } \in X , y=k=1nηkekX, 由上述不等式知

∥ x ∥ − ∥ y ∥ ∣ ⩽ ∥ x − y ∥ ⩽ m ( ∑ k = 1 n ∣ ξ k − η k ∣ 2 ) 1 2 . \| x \| - \| y \| | \leqslant \| x - y \| \leqslant m \left( \sum _ { k = 1 } ^ { n } \left| \xi _ { k } - \eta _ { k } \right| ^ { 2 } \right) ^ { \frac { 1 } { 2 } } . xy∥∣xym(k=1nξkηk2)21.

这说明,范数 ∥ ⋅ ∥ \| \cdot \| 是欧氏空间 R n \mathbf { R } ^ { n } Rn (或 C n ) \left. \mathrm { C } ^ { n } \right) Cn) 上关于 ξ 1 , ξ 2 , ⋯   , ξ n \xi _ { 1 } , \xi _ { 2 } , \cdots , \xi _ { n } ξ1,ξ2,,ξn 的连续函数

f ( ξ 1 , ξ 2 , ⋯   , ξ n ) = ∥ x ∥ . f \left( \xi _ { 1 } , \xi _ { 2 } , \cdots , \xi _ { n } \right) = \| x \| . f(ξ1,ξ2,,ξn)=x∥.

( ξ 1 , ξ 2 , ⋯   , ξ k ) \left( \xi _ { 1 } , \xi _ { 2 } , \cdots , \xi _ { k } \right) (ξ1,ξ2,,ξk)位于 R n \mathbf { R } ^ { n } Rn (或 C n ) \left. \mathrm { C } ^ { n } \right) Cn)的单位球面 S S S 上,即

∑ k = 1 n ∣ ξ k ∣ 2 = 1 时, ∥ ∑ k = 1 n ξ k e k ∥ = ∥ x ∥ ≠ 0. \sum _ { k = 1 } ^ { n } \left| \xi _ { k } \right| ^ { 2 } = 1 时,\left\| \sum _ { k = 1 } ^ { n } \xi _ { k } e _ { k } \right\| = \| x \| \neq 0 . k=1nξk2=1时, k=1nξkek =x=0.

实际上,若 ∥ ∑ k = 1 n ξ k e k ∥ = 0 , \left\| \sum _ { k = 1 } ^ { n } \xi _ { k } e _ { k } \right\| = 0 , k=1nξkek=0,必有 ∑ k = 1 n ξ k e k = 0 , \sum _ { k = 1 } ^ { n } \xi _ { k } e _ { k } = 0 , k=1nξkek=0, ∑ k = 1 n ∣ ξ k ∣ 2 = 1 , \sum _ { k = 1 } ^ { n } \left| \xi _ { k } \right| ^ { 2 } = 1 , k=1nξk2=1, 从而 ξ 1 , ξ 2 , ⋯   , ξ n \xi _ { 1 } , \xi _ { 2 } , \cdots , \xi _ { n } ξ1,ξ2,,ξn 不全为0,再由 { e k } \left\{ e _ { k } \right\} {ek} 是线性无关的,得到矛盾.这就是说 f ( ξ 1 , ξ 2 , ⋯   , ξ n ) = ∥ x ∥ f \left( \xi _ { 1 } , \xi _ { 2 } , \cdots , \xi _ { n } \right) = \| x \| f(ξ1,ξ2,,ξn)=x S S S 上处处不为0,因 S S S R n \mathbf { R } ^ { n } Rn (或 C n ) \left. \mathrm { C } ^ { n } \right) Cn) 中 有界闭集, f f f S S S 上取得非零的最小值 m ′ , m ′ > 0 , m ^ { \prime } , m ^ { \prime } > 0 , m,m>0, 于是,对任意的 x ∈ X , x \in X , xX, x ′ = ( ∑ k = 1 n ∣ ξ k ∣ 2 ) − 1 2 x , x ^ { \prime } = \left( \sum _ { k = 1 } ^ { n } \left| \xi _ { k } \right| ^ { 2 } \right) ^ { - \frac { 1 } { 2 } } x , x=(k=1nξk2)21x,因此, ( ∑ k = 1 n ∣ ξ k ∣ 2 ) − 1 2 ( ξ 1 , ξ 2 , ⋯   , ξ n ) ∈ S , \left( \sum _ { k = 1 } ^ { n } \left| \xi _ { k } \right| ^ { 2 } \right) ^ { - \frac { 1 } { 2 } } \left( \xi _ { 1 } , \xi _ { 2 } , \cdots , \xi _ { n } \right) \in S , (k=1nξk2)21(ξ1,ξ2,,ξn)S, ∥ x ′ ∥ ⩾ m ′ . \left\| x ^ { \prime } \right\| \geqslant m ^ { \prime } . xm.这样一来,我们有

m ′ ( ∑ k = 1 n ∣ ξ k ∣ 2 ) 1 2 ⩽ ( ∑ k = 1 n ∣ ξ k ∣ 2 ) 1 2 ∥ x ′ ∥ = ∥ x ∥ ⩽ m ( ∑ k = 1 n ∣ ξ k ∣ 2 ) 1 2 . m ^ { \prime } \left( \sum _ { k = 1 } ^ { n } \left| \xi _ { k } \right| ^ { 2 } \right) ^ { \frac { 1 } { 2 } } \leqslant \left( \sum _ { k = 1 } ^ { n } \left| \xi _ { k } \right| ^ { 2 } \right) ^ { \frac { 1 } { 2 } } \left\| x ^ { \prime } \right\| = \| x \| \leqslant m \left( \sum _ { k = 1 } ^ { n } \left| \xi _ { k } \right| ^ { 2 } \right) ^ { \frac { 1 } { 2 } } . m(k=1nξk2)21(k=1nξk2)21x=xm(k=1nξk2)21.

M = 1 m , M ′ = 1 m ′ , M = \frac { 1 } { m } , M ^ { \prime } = \frac { 1 } { m ^ { \prime } } , M=m1,M=m1, 即可得结论

推论1

设在有限维线性空间上定义了两个范数 ∥ ⋅ ∥ \| \cdot \| ∥ ⋅ ∥ 1 , \| \cdot \| _ { 1 } , 1, 那么必存在常数 M M M M ′ , M ^ { \prime } , M, 使得对任意 x ∈ X , x \in X , xX,

M ∥ x ∥ ⩽ ∥ x ∥ 1 ⩽ M ′ ∥ x ∥ . M \| x \| \leqslant \| x \| _ { 1 } \leqslant M ^ { \prime } \| x \| . Mxx1Mx∥.

证明
我们记 ∥ x ∥ 0 = ( ∑ k = 1 n ∣ ξ k ∣ 2 ) 1 2 . \| x \| _ { 0 } = \left( \sum _ { k = 1 } ^ { n } \left| \xi _ { k } \right| ^ { 2 } \right) ^ { \frac { 1 } { 2 } } . x0=(k=1nξk2)21.其中 x = ∑ k = 1 n ξ k e k . x = \sum _ { k = 1 } ^ { n } \xi _ { k } e _ { k } . x=k=1nξkek.由定理3可知,存在正数 k k k k ′ , L k ^ { \prime } , L k,L L ′ L ^ { \prime } L

k ∥ x ∥ ⩽ ∥ x ∥ 0 ⩽ k ′ ∥ x ∥ , L ∥ x ∥ 1 ⩽ ∥ x ∥ 0 ⩽ L ′ ∥ x ∥ 1 k \| x \| \leqslant \| x \| _ { 0 } \leqslant k ^ { \prime } \| x \| , \\ L \| x \| _ { 1 } \leqslant \| x \| _ { 0 } \leqslant L ^ { \prime } \| x \| _ { 1 } kxx0kx,Lx1x0Lx1

将两式综合起来,令 M = k L ′ , M ′ = k ′ L , M = \frac { k } { L ^ { \prime } } , M ^ { \prime } = \frac { k ^ { \prime } } { L } , M=Lk,M=Lk,即得结论

定义2

( R 1 , ∥ ⋅ ∥ 1 ) \left( R _ { 1 } , \| \cdot \| _ { 1 } \right) (R1,1) ( R 2 , ∥ ⋅ ∥ 2 ) \left( R _ { 2 } , \| \cdot \| _ { 2 } \right) (R2,2)是两个赋范线性空间.如果存在从 R 1 R _ { 1 } R1
R 2 R _ { 2 } R2 上的映射 φ \varphi φ 满足条件:对任意 x , y ∈ R 1 x , y \in R _ { 1 } x,yR1及数 α , β \alpha , \beta α,β φ ( α x + β y ) = α φ ( x ) + β φ ( y ) \varphi ( \alpha x + \beta y ) = \alpha \varphi ( x ) + \beta \varphi ( y ) φ(αx+βy)=αφ(x)+βφ(y)以及正数 c 1 , c 2 , c _ { 1 } , c _ { 2 } , c1,c2, 使得对一切 x ∈ R 1 , x \in R _ { 1 } , xR1,

c 1 ∥ φ ( x ) ∥ 2 ⩽ ∥ x ∥ 1 ⩽ c 2 ∥ φ ( x ) ∥ 2 c _ { 1 } \| \varphi ( x ) \| _ { 2 } \leqslant \| x \| _ { 1 } \leqslant c _ { 2 } \| \varphi ( x ) \| _ { 2 } c1φ(x)2x1c2φ(x)2

则称 ( R 1 , ∥ ⋅ ∥ 1 ) \left( R _ { 1 } , \| \cdot \| _ { 1 } \right) (R1,1) ( R 2 , ∥ ⋅ ∥ 2 ) \left( R _ { 2 } , \| \cdot \| _ { 2 } \right) (R2,2)这两个赋范空间是拓扑同构的

推论2

任何有限维赋范空间都和同维数欧氏空间(或某个 C n ) \left. \mathrm { C } ^ { n } \right) Cn) 拓扑同构.同数域上的相同维数的有限维赋范空间彼此拓扑同构

  • 9
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值