泛函分析基础7-1-度量空间2-3-3:度量空间中点列收敛(依度量收敛)的具体意义【序列空间】

下面讨论某些具体空间中点列收敛的具体意义


序列空间 S S S 中,设 x m = ( ξ 1 ( m ) , ξ 2 ( m ) , ⋯   , ξ n ( m ) , ⋯   ) , m = 1 , 2 , ⋯ x _ { m } = \left( \xi _ { 1 } ^ { ( m ) } , \xi _ { 2 } ^ { ( m ) } , \cdots , \xi _ { n } ^ { ( m ) } , \cdots \right) , m = 1 , 2 , \cdots xm=(ξ1(m),ξ2(m),,ξn(m),),m=1,2, x = ( ξ 1 , ξ 2 , ⋯ , x = \left(\xi _{1},\xi _{2},⋯,\right. x=(ξ1,ξ2,, ξ n , ⋯   ) \left. \xi _ { n } , \cdots \right) ξn,) 分别为 S S S中点列及点,下面证明点列 { x m } \left\{ x _ { m } \right\} { xm} 收敛于 x x x的充要条件为 x m x _ { m } xm 依坐标收敛于 x , x , x, 即对每个正整数 i , ξ i ( m ) → ξ i ( m → ∞ ) i , \xi _ { i } ^ { ( m ) } \rightarrow \xi _ { i } ( m \rightarrow \infty ) i,ξi(m)ξi(m)成立.

事实上,如果 x m → x ( m → ∞ ) , x _ { m } \rightarrow x ( m \rightarrow \infty ) , xmx(m),

d ( x m , x ) = ∑ i = 1 ∞ 1 2 i ∣ ξ i ( m ) − ξ i ∣ 1 + ∣ ξ i ( m ) − ξ i ∣ → 0 ( m → ∞ ) , d \left( x _ { m } , x \right) = \sum _ { i = 1 } ^ { \infty } \frac { 1 } { 2 ^ { i } } \frac { \left| \xi _ { i } ^ { ( m ) } - \xi _ { i } \right| } { 1 + \left| \xi _ { i } ^ { ( m ) } - \xi _ { i } \right| } \rightarrow 0 \quad ( m \rightarrow \infty ) , d(xm,x)=i=12i11+ ξi(m)ξi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值