下面讨论某些具体空间中点列收敛的具体意义
序列空间 S S S 中,设 x m = ( ξ 1 ( m ) , ξ 2 ( m ) , ⋯ , ξ n ( m ) , ⋯ ) , m = 1 , 2 , ⋯ x _ { m } = \left( \xi _ { 1 } ^ { ( m ) } , \xi _ { 2 } ^ { ( m ) } , \cdots , \xi _ { n } ^ { ( m ) } , \cdots \right) , m = 1 , 2 , \cdots xm=(ξ1(m),ξ2(m),⋯,ξn(m),⋯),m=1,2,⋯及 x = ( ξ 1 , ξ 2 , ⋯ , x = \left(\xi _{1},\xi _{2},⋯,\right. x=(ξ1,ξ2,⋯, ξ n , ⋯ ) \left. \xi _ { n } , \cdots \right) ξn,⋯) 分别为 S S S中点列及点,下面证明点列 { x m } \left\{ x _ { m } \right\} { xm} 收敛于 x x x的充要条件为 x m x _ { m } xm 依坐标收敛于 x , x , x, 即对每个正整数 i , ξ i ( m ) → ξ i ( m → ∞ ) i , \xi _ { i } ^ { ( m ) } \rightarrow \xi _ { i } ( m \rightarrow \infty ) i,ξi(m)→ξi(m→∞)成立.
事实上,如果 x m → x ( m → ∞ ) , x _ { m } \rightarrow x ( m \rightarrow \infty ) , xm→x(m→∞), 即
d ( x m , x ) = ∑ i = 1 ∞ 1 2 i ∣ ξ i ( m ) − ξ i ∣ 1 + ∣ ξ i ( m ) − ξ i ∣ → 0 ( m → ∞ ) , d \left( x _ { m } , x \right) = \sum _ { i = 1 } ^ { \infty } \frac { 1 } { 2 ^ { i } } \frac { \left| \xi _ { i } ^ { ( m ) } - \xi _ { i } \right| } { 1 + \left| \xi _ { i } ^ { ( m ) } - \xi _ { i } \right| } \rightarrow 0 \quad ( m \rightarrow \infty ) , d(xm,x)=i=1∑∞2i11+ ξi(m)−ξi