LLM关键函数对比:训练阶段的model(),推理阶段的model(),推理阶段的model.generate()

以下是针对 LLaMA2-7B 的详细分阶段解释与代码示例,涵盖训练、手动生成、Logits 提取和自动生成,输入均为 "Once upon a time,",目标输出为 "there was a cat."。代码包含内部实现的简化逻辑。

一. 训练阶段的 model(inputs, labels=labels)

目标与流程
  • 输入:文本 "Once upon a time,",右移一位作为标签(labels)。
  • 任务:训练模型预测下一个 token(自回归语言建模)。
  • 核心步骤
    1. 输入序列:input_ids = [token_0, token_1, ..., token_{n-1}](长度为 n)。
    2. 标签序列:labels = [token_1, token_2, ..., token_n]<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值